BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 21336522)

  • 1. Antimicrobial peptides with cell-penetrating peptide properties and vice versa.
    Splith K; Neundorf I
    Eur Biophys J; 2011 Apr; 40(4):387-97. PubMed ID: 21336522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments.
    Bustillo ME; Fischer AL; LaBouyer MA; Klaips JA; Webb AC; Elmore DE
    Biochim Biophys Acta; 2014 Sep; 1838(9):2228-2233. PubMed ID: 24747525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides.
    Pärn K; Eriste E; Langel Ü
    Methods Mol Biol; 2015; 1324():223-45. PubMed ID: 26202273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant antimicrobial peptides.
    Nawrot R; Barylski J; Nowicki G; Broniarczyk J; Buchwald W; Goździcka-Józefiak A
    Folia Microbiol (Praha); 2014 May; 59(3):181-96. PubMed ID: 24092498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties.
    Neundorf I
    Adv Exp Med Biol; 2019; 1117():93-109. PubMed ID: 30980355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-helical cationic antimicrobial peptides: relationships of structure and function.
    Huang Y; Huang J; Chen Y
    Protein Cell; 2010 Feb; 1(2):143-52. PubMed ID: 21203984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistep optimization of a cell-penetrating peptide towards its antimicrobial activity.
    Drexelius M; Reinhardt A; Grabeck J; Cronenberg T; Nitsche F; Huesgen PF; Maier B; Neundorf I
    Biochem J; 2021 Jan; 478(1):63-78. PubMed ID: 33313751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review.
    Sadiq IZ; Muhammad A; Mada SB; Ibrahim B; Umar UA
    Tissue Barriers; 2022 Jul; 10(3):1995285. PubMed ID: 34694961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections.
    Buccini DF; Cardoso MH; Franco OL
    Front Cell Infect Microbiol; 2020; 10():612931. PubMed ID: 33614528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity.
    Lorenzon EN; Piccoli JP; Santos-Filho NA; Cilli EM
    Protein Pept Lett; 2019; 26(2):98-107. PubMed ID: 30605048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pVEC hydrophobic N-terminus is critical for antibacterial activity.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Pept Sci; 2018 Jun; 24(6):e3083. PubMed ID: 29737576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.
    Piotrowska U; Sobczak M; Oledzka E
    Chem Biol Drug Des; 2017 Dec; 90(6):1079-1093. PubMed ID: 28548370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects.
    Ponnappan N; Budagavi DP; Yadav BK; Chugh A
    Probiotics Antimicrob Proteins; 2015 Mar; 7(1):75-89. PubMed ID: 25559972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial Peptides.
    Casciaro B; Ghirga F; Quaglio D; Mangoni ML
    Curr Protein Pept Sci; 2020; 21(4):429-438. PubMed ID: 31797755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids.
    Chongsiriwatana NP; Lin JS; Kapoor R; Wetzler M; Rea JAC; Didwania MK; Contag CH; Barron AE
    Sci Rep; 2017 Dec; 7(1):16718. PubMed ID: 29196622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptides and Antibiotic Therapy: Advances in Design and Delivery.
    Schafer ME; Browne H; Goldberg JB; Greenberg DE
    Acc Chem Res; 2021 May; 54(10):2377-2385. PubMed ID: 33881843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptides: A Promising Avenue for Human Healthcare.
    Bhopale GM
    Curr Pharm Biotechnol; 2020; 21(2):90-96. PubMed ID: 31612826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.