These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21336839)

  • 1. Time course of neuro-mechanical changes underlying stretch-shortening cycle during intermittent exhaustive rebound exercise.
    Morio C; Chavet P; Androuet P; Foissac M; Berton E; Nicol C
    Eur J Appl Physiol; 2011 Sep; 111(9):2295-305. PubMed ID: 21336839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute and 2 days delayed effects of exhaustive stretch-shortening cycle exercise on barefoot walking and running patterns.
    Morio C; Nicol C; Barla C; Barthèlemy J; Berton E
    Eur J Appl Physiol; 2012 Aug; 112(8):2817-27. PubMed ID: 22124522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg stiffness modulation during exhaustive stretch-shortening cycle exercise.
    Kuitunen S; Kyröläinen H; Avela J; Komi PV
    Scand J Med Sci Sports; 2007 Feb; 17(1):67-75. PubMed ID: 17305941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute and delayed neuromuscular adjustments of the triceps surae muscle group to exhaustive stretch-shortening cycle fatigue.
    Regueme SC; Nicol C; Barthèlemy J; Grélot L
    Eur J Appl Physiol; 2005 Jan; 93(4):398-410. PubMed ID: 15480740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuro-mechanical adjustments to shod versus barefoot treadmill runs in the acute and delayed stretch-shortening cycle recovery phases.
    Morio C; Sevrez V; Chavet P; Berton E; Nicol C
    J Sports Sci; 2016; 34(8):738-45. PubMed ID: 26222328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance.
    Horita T; Komi PV; Hämäläinen I; Avela J
    Eur J Appl Physiol; 2003 Feb; 88(6):527-34. PubMed ID: 12560951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue.
    Nicol C; Avela J; Komi PV
    Sports Med; 2006; 36(11):977-99. PubMed ID: 17052133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exhaustive stretch-shortening cycle exercise: no contralateral effects on muscle activity in maximal motor performances.
    Regueme SC; Barthèlemy J; Nicol C
    Scand J Med Sci Sports; 2007 Oct; 17(5):547-55. PubMed ID: 17316375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretch shortening cycle fatigue: interactions among joint stiffness, reflex, and muscle mechanical performance in the drop jump [corrected].
    Horita T; Komi PV; Nicol C; Kyröläinen H
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):393-403. PubMed ID: 8803498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue during stretch-shortening cycle exercises: changes in mechanical performance of human skeletal muscle.
    Gollhofer A; Komi PV; Miyashita M; Aura O
    Int J Sports Med; 1987 Apr; 8(2):71-8. PubMed ID: 3596879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue during stretch-shortening cycle exercises. II. Changes in neuromuscular activation patterns of human skeletal muscle.
    Gollhofer A; Komi PV; Fujitsuka N; Miyashita M
    Int J Sports Med; 1987 Mar; 8 Suppl 1():38-47. PubMed ID: 3583519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medial Gastrocnemius Muscle Architecture Is Altered After Exhaustive Stretch-Shortening Cycle Exercise.
    Kositsky A; Kidgell DJ; Avela J
    Front Physiol; 2019; 10():1511. PubMed ID: 31920715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exhausting stretch-shortening cycle exercise on the time course of mechanical behaviour in the drop jump: possible role of muscle damage.
    Horita T; Komi PV; Nicol C; Kyröläinen H
    Eur J Appl Physiol Occup Physiol; 1999 Jan; 79(2):160-7. PubMed ID: 10029337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular fatigue recovery following rapid and slow stretch-shortening cycle movements.
    Wadden KP; Button DC; Kibele A; Behm DG
    Appl Physiol Nutr Metab; 2012 Jun; 37(3):437-47. PubMed ID: 22468795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary activation and mechanical performance of human triceps surae muscle after exhaustive stretch-shortening cycle jumping exercise.
    Kuitunen S; Avela J; Kyröläinen H; Komi PV
    Eur J Appl Physiol; 2004 May; 91(5-6):538-44. PubMed ID: 14639478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the tendinous tissue to force enhancement during stretch-shortening cycle exercise depends on the prestretch and concentric phase intensities.
    Ishikawa M; Komi PV; Finni T; Kuitunen S
    J Electromyogr Kinesiol; 2006 Oct; 16(5):423-31. PubMed ID: 16275136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise.
    Ishikawa M; Komi PV
    J Appl Physiol (1985); 2004 Mar; 96(3):848-52. PubMed ID: 14594857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in joint, muscle, and tendon stiffness following repeated hopping exercise.
    Kubo K; Ikebukuro T
    Physiol Rep; 2019 Oct; 7(19):e14237. PubMed ID: 31605467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Stretch-Shortening-Cycle Behavior With Eccentric Loading of Triceps Surae: A Possible Therapeutic Mechanism.
    Debenham JR; Gibson WI; Travers MJ; Campbell AC; Allison GT
    J Sport Rehabil; 2017 Apr; 26(2):151-158. PubMed ID: 27632850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related neuromuscular function during drop jumps.
    Hoffrén M; Ishikawa M; Komi PV
    J Appl Physiol (1985); 2007 Oct; 103(4):1276-83. PubMed ID: 17690197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.