These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21336923)

  • 1. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae.
    Sadie CJ; Rose SH; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2011 May; 90(4):1373-80. PubMed ID: 21336923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphisms in the LAC12 gene explain lactose utilisation variability in Kluyveromyces marxianus strains.
    Varela JA; Montini N; Scully D; Van der Ploeg R; Oreb M; Boles E; Hirota J; Akada R; Hoshida H; Morrissey JP
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28444380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal β-glucosidase expression in Saccharomyces cerevisiae.
    Njokweni AP; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1445-52. PubMed ID: 22707073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of lactose fermentation using a recombinant Saccharomyces cerevisiae strain.
    Jurascík M; Guimarães P; Klein J; Domingues L; Teixeira J; Markos J
    Biotechnol Bioeng; 2006 Aug; 94(6):1147-54. PubMed ID: 16615146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
    Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY
    Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface.
    Tokuhiro K; Ishida N; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1.
    Baruffini E; Goffrini P; Donnini C; Lodi T
    FEMS Yeast Res; 2006 Dec; 6(8):1235-42. PubMed ID: 17156020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.
    Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A
    Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts.
    Rocha SN; Abrahão-Neto J; Cerdán ME; Gombert AK; González-Siso MI
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):375-85. PubMed ID: 20862582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis and lactose transporter expression in Kluyveromyces marxianus CCT 7735.
    Paiva LC; Diniz RHS; Vidigal PMP; Mendes TAO; Santana MF; Cerdán ME; González-Siso MI; Silveira WBD
    Fungal Biol; 2019 Sep; 123(9):687-697. PubMed ID: 31416588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2.
    Van Laere SD; Saerens SM; Verstrepen KJ; Van Dijck P; Thevelein JM; Delvaux FR
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):783-92. PubMed ID: 18309479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403.
    Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J
    Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains.
    van Rooyen R; Hahn-Hägerdal B; La Grange DC; van Zyl WH
    J Biotechnol; 2005 Nov; 120(3):284-95. PubMed ID: 16084620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of Lactose Fermentation in Kluyveromyces lactis by Interspecies Transfer of a Neo-functionalized Gene Cluster during Domestication.
    Varela JA; Puricelli M; Ortiz-Merino RA; Giacomobono R; Braun-Galleani S; Wolfe KH; Morrissey JP
    Curr Biol; 2019 Dec; 29(24):4284-4290.e2. PubMed ID: 31813610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.
    Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS
    J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of strains of Saccharomyces cerevisiae that grow on lactose.
    Sreekrishna K; Dickson RC
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7909-13. PubMed ID: 3934664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis.
    Lodi T; Fontanesi F; Ferrero I; Donnini C
    Gene; 2004 Sep; 339():111-9. PubMed ID: 15363851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.