These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21336938)

  • 21. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman lidar for remote sensing of oil in water.
    Somekawa T; Izawa J; Fujita M; Kawanaka J; Kuze H
    Appl Opt; 2021 Sep; 60(25):7772-7774. PubMed ID: 34613249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-ultraviolet Raman microspectroscopy: characterization of wide-gap semiconductors.
    Nakashima S; Okumura H; Yamamoto T; Shimidzu R
    Appl Spectrosc; 2004 Feb; 58(2):224-9. PubMed ID: 17140482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing mapping and direct hyperspectral imaging in stand-off Raman spectroscopy for remote material identification.
    Gasser C; González-Cabrera M; Ayora-Cañada MJ; Domínguez-Vidal A; Lendl B
    J Raman Spectrosc; 2019 Jul; 50(7):1034-1043. PubMed ID: 31598032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman spectroscopy for detection of ammonium nitrate as an explosive precursor used in improvised explosive devices.
    Diaz D; Hahn DW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 233():118204. PubMed ID: 32146426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].
    Guo JJ; Lu Y; Liu CH; Zheng RE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):259-61. PubMed ID: 27228778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative determination of diclofenac sodium and aminophylline in injection solutions by FT-Raman spectroscopy.
    Mazurek S; Szostak R
    J Pharm Biomed Anal; 2006 Mar; 40(5):1235-42. PubMed ID: 16280227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers.
    Iping Petterson IE; Dvořák P; Buijs JB; Gooijer C; Ariese F
    Analyst; 2010 Dec; 135(12):3255-9. PubMed ID: 20941438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser crater enhanced Raman spectroscopy.
    Lednev VN; Sdvizhenskii PA; Grishin MY; Filippov MN; Shchegolikhin AN; Pershin SM
    Opt Lett; 2017 Feb; 42(3):607-610. PubMed ID: 28146539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy.
    Heinz A; Savolainen M; Rades T; Strachan CJ
    Eur J Pharm Sci; 2007 Nov; 32(3):182-92. PubMed ID: 17716878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the effect of particle size on polymorphic quantitation by Raman spectroscopy.
    Hu Y; Wikström H; Byrn SR; Taylor LS
    Appl Spectrosc; 2006 Sep; 60(9):977-84. PubMed ID: 17002821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera.
    Efremov EV; Buijs JB; Gooijer C; Ariese F
    Appl Spectrosc; 2007 Jun; 61(6):571-8. PubMed ID: 17650366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source.
    Kumar M; Islam MN; Terry FL; Freeman MJ; Chan A; Neelakandan M; Manzur T
    Appl Opt; 2012 May; 51(15):2794-807. PubMed ID: 22614581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.
    Bykov SV; Mao M; Gares KL; Asher SA
    Appl Spectrosc; 2015 Aug; 69(8):895-901. PubMed ID: 26162998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracking Airborne Molecules from Afar: Three-Dimensional Metal-Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring.
    Phan-Quang GC; Yang N; Lee HK; Sim HYF; Koh CSL; Kao YC; Wong ZC; Tan EKM; Miao YE; Fan W; Liu T; Phang IY; Ling XY
    ACS Nano; 2019 Oct; 13(10):12090-12099. PubMed ID: 31518107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.
    Petterson IE; López-López M; García-Ruiz C; Gooijer C; Buijs JB; Ariese F
    Anal Chem; 2011 Nov; 83(22):8517-23. PubMed ID: 21967622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stand-off Hyperspectral Raman Imaging and Random Decision Forest Classification: A Potent Duo for the Fast, Remote Identification of Explosives.
    Gasser C; Göschl M; Ofner J; Lendl B
    Anal Chem; 2019 Jun; 91(12):7712-7718. PubMed ID: 31081317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media.
    Ariese F; Meuzelaar H; Kerssens MM; Buijs JB; Gooijer C
    Analyst; 2009 Jun; 134(6):1192-7. PubMed ID: 19475147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.