BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21337191)

  • 1. Effect of chlorination on the development of marine biofilms dominated by diatoms.
    Patil JS; Jagadeesan V
    Biofouling; 2011 Mar; 27(3):241-54. PubMed ID: 21337191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm diatom community structure: influence of temporal and substratum variability.
    Patil JS; Anil AC
    Biofouling; 2005; 21(3-4):189-206. PubMed ID: 16371339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of natural uncultivable Legionella pneumophila into potable water biofilms provides a protective niche against chlorination stress.
    Gião MS; Wilks S; Azevedo NF; Vieira MJ; Keevil CW
    Biofouling; 2009; 25(4):335-41. PubMed ID: 19241230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diatom community structure on commercially available ship hull coatings.
    Zargiel KA; Coogan JS; Swain GW
    Biofouling; 2011 Oct; 27(9):955-65. PubMed ID: 21932984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection.
    Cooper IR; Hanlon GW
    J Hosp Infect; 2010 Feb; 74(2):152-9. PubMed ID: 19783074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection.
    Rand JL; Hofmann R; Alam MZ; Chauret C; Cantwell R; Andrews RC; Gagnon GA
    Water Res; 2007 May; 41(9):1939-48. PubMed ID: 17383708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorination induced damage and recovery in marine diatoms: Assay by SYTOX® Green staining.
    Venkatnarayanan S; Sriyutha Murthy P; Nancharaiah YV; Kirubagaran R; Venugopalan VP
    Mar Pollut Bull; 2017 Nov; 124(2):819-826. PubMed ID: 28117130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorine toxicity to Navicula pelliculosa and Achnanthes spp. in a flow-through system: The use of immobilised microalgae and variable chlorophyll fluorescence.
    Vannoni M; Creach V; Barry J; Sheahan D
    Aquat Toxicol; 2018 Sep; 202():80-89. PubMed ID: 30007157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies.
    Dobretsov S; Thomason JC
    Biofouling; 2011 Sep; 27(8):869-80. PubMed ID: 21864210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia.
    Molino PJ; Campbell E; Wetherbee R
    Biofouling; 2009 Nov; 25(8):685-94. PubMed ID: 20183127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Burkholderia cepacia biofilms with oxidants.
    Koenig DW; Mishra SK; Pierson DL
    Biofouling; 1995; 9(1):51-62. PubMed ID: 11541193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems.
    Lehtola MJ; Miettinen IT; Lampola T; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2005 May; 39(10):1962-71. PubMed ID: 15869778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary.
    Mitbavkar S; Anil AC
    Biofouling; 2008; 24(6):415-26. PubMed ID: 18668383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diatom communities on commercial biocidal fouling control coatings after one year of immersion in the marine environment.
    Muthukrishnan T; Dobretsov S; De Stefano M; Abed RMM; Kidd B; Finnie AA
    Mar Environ Res; 2017 Aug; 129():102-112. PubMed ID: 28499739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms.
    Thi Nguyen H; Choi W; Jeong S; Bae H; Oh S; Cho K
    J Hazard Mater; 2024 Aug; 474():134751. PubMed ID: 38820748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible shift in the alpha-, beta- and gamma-proteobacteria populations of drinking water biofilms during discontinuous chlorination.
    Mathieu L; Bouteleux C; Fass S; Angel E; Block JC
    Water Res; 2009 Aug; 43(14):3375-86. PubMed ID: 19539973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion and motility of fouling diatoms on a silicone elastomer.
    Holland R; Dugdale TM; Wetherbee R; Brennan AB; Finlay JA; Callow JA; Callow ME
    Biofouling; 2004 Dec; 20(6):323-9. PubMed ID: 15804716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity.
    Duong TT; Morin S; Coste M; Herlory O; Feurtet-Mazel A; Boudou A
    Sci Total Environ; 2010 Jan; 408(3):552-62. PubMed ID: 19896161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms.
    Duong TT; Morin S; Herlory O; Feurtet-Mazel A; Coste M; Boudou A
    Aquat Toxicol; 2008 Oct; 90(1):19-28. PubMed ID: 18801587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.