These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21337226)

  • 1. Development of a finite element model of the tibia for short-duration high-force axial impact loading.
    Quenneville CE; Dunning CE
    Comput Methods Biomech Biomed Engin; 2011 Feb; 14(2):205-12. PubMed ID: 21337226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element and experimental cortex strains of the intact and implanted tibia.
    Completo A; Fonseca F; Simões JA
    J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the biofidelity of the HIII and MIL-Lx lower leg surrogates under axial impact loading.
    Quenneville CE; Dunning CE
    Traffic Inj Prev; 2012; 13(1):81-5. PubMed ID: 22239148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice.
    Silva MJ; Brodt MD; Hucker WJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):380-90. PubMed ID: 15747345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element models of rib as an inhomogeneous beam structure under high-speed impacts.
    Niu Y; Shen W; Stuhmiller JH
    Med Eng Phys; 2007 Sep; 29(7):788-98. PubMed ID: 17045511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia.
    Quenneville CE; McLachlin SD; Greeley GS; Dunning CE
    J Trauma; 2011 Jan; 70(1):E13-8. PubMed ID: 21217472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an apparatus to produce fractures from short-duration high-impulse loading with an application in the lower leg.
    Quenneville CE; Fraser GS; Dunning CE
    J Biomech Eng; 2010 Jan; 132(1):014502. PubMed ID: 20524750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
    Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW
    J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D characterization of bone strains in the rat tibia loading model.
    Torcasio A; Zhang X; Duyck J; van Lenthe GH
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):403-10. PubMed ID: 21688057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data.
    Kallemeyn N; Gandhi A; Kode S; Shivanna K; Smucker J; Grosland N
    Med Eng Phys; 2010 Jun; 32(5):482-9. PubMed ID: 20392660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Finite element analysis of human tibia in vitro].
    Liao D; Han H; Kuang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Mar; 15(1):53-7. PubMed ID: 12549355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model of the lower limb for simulating automotive impacts.
    Untaroiu CD; Yue N; Shin J
    Ann Biomed Eng; 2013 Mar; 41(3):513-26. PubMed ID: 23180026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.