These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21337472)

  • 1. Emergence of synchronous EEG spindles from asynchronous MEG spindles.
    Dehghani N; Cash SS; Halgren E
    Hum Brain Mapp; 2011 Dec; 32(12):2217-27. PubMed ID: 21337472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.
    Dehghani N; Cash SS; Rossetti AO; Chen CC; Halgren E
    J Neurophysiol; 2010 Jul; 104(1):179-88. PubMed ID: 20427615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.
    Dehghani N; Cash SS; Chen CC; Hagler DJ; Huang M; Dale AM; Halgren E
    PLoS One; 2010 Jul; 5(7):e11454. PubMed ID: 20628643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographical frequency dynamics within EEG and MEG sleep spindles.
    Dehghani N; Cash SS; Halgren E
    Clin Neurophysiol; 2011 Feb; 122(2):229-35. PubMed ID: 20637689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording.
    Urakami Y
    J Clin Neurophysiol; 2008 Feb; 25(1):13-24. PubMed ID: 18303556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grouping of MEG gamma oscillations by EEG sleep spindles.
    Ayoub A; Mölle M; Preissl H; Born J
    Neuroimage; 2012 Jan; 59(2):1491-500. PubMed ID: 21893206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical locations of maximal spindle activity: magnetoencephalography (MEG) study.
    Gumenyuk V; Roth T; Moran JE; Jefferson C; Bowyer SM; Tepley N; Drake CL
    J Sleep Res; 2009 Jun; 18(2):245-53. PubMed ID: 19645968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between sleep spindles and activities of the cerebral cortex after hemispheric stroke as determined by simultaneous EEG and MEG recordings.
    Urakami Y
    J Clin Neurophysiol; 2009 Aug; 26(4):248-56. PubMed ID: 19584747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Approach to Estimating the Cortical Sources of Sleep Spindles Using Simultaneous EEG/MEG.
    Mylonas D; Sjøgård M; Shi Z; Baxter B; Hämäläinen M; Manoach DS; Khan S
    Front Neurol; 2022; 13():871166. PubMed ID: 35785365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical source imaging of sleep spindles.
    Del Felice A; Arcaro C; Storti SF; Fiaschi A; Manganotti P
    Clin EEG Neurosci; 2014 Jul; 45(3):184-92. PubMed ID: 24114073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics.
    Rosen BQ; Krishnan GP; Sanda P; Komarov M; Sejnowski T; Rulkov N; Ulbert I; Eross L; Madsen J; Devinsky O; Doyle W; Fabo D; Cash S; Bazhenov M; Halgren E
    J Neurosci Methods; 2019 Mar; 316():46-57. PubMed ID: 30300700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between, sleep spindles and clinical recovery in patients with traumatic brain injury: a simultaneous EEG and MEG study.
    Urakami Y
    Clin EEG Neurosci; 2012 Jan; 43(1):39-47. PubMed ID: 22423550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
    Krishnan GP; Rosen BQ; Chen JY; Muller L; Sejnowski TJ; Cash SS; Halgren E; Bazhenov M
    PLoS Comput Biol; 2018 Jun; 14(6):e1006171. PubMed ID: 29949575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current source density distribution of sleep spindles in humans as found by synthetic aperture magnetometry.
    Ishii R; Dziewas R; Chau W; Sörös P; Okamoto H; Gunji A; Pantev C
    Neurosci Lett; 2003 Apr; 340(1):25-8. PubMed ID: 12648750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power and coherence of sleep spindle frequency activity following hemispheric stroke.
    Gottselig JM; Bassetti CL; Achermann P
    Brain; 2002 Feb; 125(Pt 2):373-83. PubMed ID: 11844737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony.
    Frauscher B; von Ellenrieder N; Dubeau F; Gotman J
    Neuroimage; 2015 Jan; 105():1-12. PubMed ID: 25450108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization.
    Bonjean M; Baker T; Bazhenov M; Cash S; Halgren E; Sejnowski T
    J Neurosci; 2012 Apr; 32(15):5250-63. PubMed ID: 22496571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.