These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21337519)

  • 21. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate.
    Yu T; Ober CK
    Biomacromolecules; 2003; 4(5):1126-31. PubMed ID: 12959574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning.
    Jang K; Sato K; Mawatari K; Konno T; Ishihara K; Kitamori T
    Biomaterials; 2009 Mar; 30(7):1413-20. PubMed ID: 19081624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative studies on the interaction of proteins with a polydimethylsiloxane elastomer. I. Monolayer protein capture capacity (PCC) as a function of protein pl, buffer pH and buffer ionic strength.
    Butler JE; Lü EP; Navarro P; Christiansen B
    J Mol Recognit; 1997; 10(1):36-51. PubMed ID: 9179778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane).
    Patrito N; McCague C; Norton PR; Petersen NO
    Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials.
    Nakabayashi N; Iwasaki Y
    Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dendrimer-grafted cell adhesion peptide-modified PDMS.
    Mikhail AS; Jones KS; Sheardown H
    Biotechnol Prog; 2008; 24(4):938-44. PubMed ID: 19194902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification.
    Hou S; Yang K; Qin M; Feng XZ; Guan L; Yang Y; Wang C
    Biosens Bioelectron; 2008 Dec; 24(4):918-22. PubMed ID: 18782664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion.
    Swan EE; Popat KC; Desai TA
    Biomaterials; 2005 May; 26(14):1969-76. PubMed ID: 15576171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of corneal cells with transforming growth factor beta 2-modified poly dimethyl siloxane surfaces.
    Merrett K; Griffith CM; Deslandes Y; Pleizier G; Dubé MA; Sheardown H
    J Biomed Mater Res A; 2003 Dec; 67(3):981-93. PubMed ID: 14613248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer.
    Chen H; Chen Y; Sheardown H; Brook MA
    Biomaterials; 2005 Dec; 26(35):7418-24. PubMed ID: 16051347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation.
    Schiraldi C; D'Agostino A; Oliva A; Flamma F; De Rosa A; Apicella A; Aversa R; De Rosa M
    Biomaterials; 2004 Aug; 25(17):3645-53. PubMed ID: 15020139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity.
    Lan S; Veiseh M; Zhang M
    Biosens Bioelectron; 2005 Mar; 20(9):1697-708. PubMed ID: 15681184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein adsorption on chemically modified surfaces.
    Collier TO; Jenney CR; DeFife KM; Anderson JM
    Biomed Sci Instrum; 1997; 33():178-83. PubMed ID: 9731356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers.
    Arima Y; Iwata H
    Biomaterials; 2007 Jul; 28(20):3074-82. PubMed ID: 17428532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.
    Pinto S; Alves P; Santos AC; Matos CM; Oliveiros B; Gonçalves S; Gudiña E; Rodrigues LR; Teixeira JA; Gil MH
    J Biomed Mater Res A; 2011 Sep; 98(4):535-43. PubMed ID: 21681946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion.
    Liu L; Chen S; Giachelli CM; Ratner BD; Jiang S
    J Biomed Mater Res A; 2005 Jul; 74(1):23-31. PubMed ID: 15920735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(1):103-19. PubMed ID: 25597772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photo-immobilization of a phospholipid polymer for surface modification.
    Konno T; Hasuda H; Ishihara K; Ito Y
    Biomaterials; 2005 Apr; 26(12):1381-8. PubMed ID: 15482825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.