These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21337519)

  • 41. Adsorption behavior of hydrophobin proteins on polydimethylsiloxane substrates.
    Liu Y; Wu M; Feng X; Shao X; Cai W
    J Phys Chem B; 2012 Oct; 116(40):12227-34. PubMed ID: 22992191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material.
    Ito Y; Hasuda H; Kamitakahara M; Ohtsuki C; Tanihara M; Kang IK; Kwon OH
    J Biosci Bioeng; 2005 Jul; 100(1):43-9. PubMed ID: 16233849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The use of a library of industrial materials to determine the nature of substrate-dependent performance of primary adherent human cells.
    Ni M; Zimmermann PK; Kandasamy K; Lai W; Li Y; Leong MF; Wan AC; Zink D
    Biomaterials; 2012 Jan; 33(2):353-64. PubMed ID: 22018387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of scaffolds from human hair proteins for tissue-engineering applications.
    Verma V; Verma P; Ray P; Ray AR
    Biomed Mater; 2008 Jun; 3(2):025007. PubMed ID: 18458372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization.
    Zhang Z; Chen S; Jiang S
    Biomacromolecules; 2006 Dec; 7(12):3311-5. PubMed ID: 17154457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions.
    Raffaini G; Ganazzoli F
    J Appl Biomater Biomech; 2010; 8(3):135-45. PubMed ID: 21337304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A hydrophobic perfluoropolyether elastomer as a patternable biomaterial for cell culture and tissue engineering.
    Schulte VA; Hu Y; Diez M; Bünger D; Möller M; Lensen MC
    Biomaterials; 2010 Nov; 31(33):8583-95. PubMed ID: 20708794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering of biomaterials surfaces by hyaluronan.
    Morra M
    Biomacromolecules; 2005; 6(3):1205-23. PubMed ID: 15877335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of cross-linked poly[(epsilon-caprolactone)-co-lactide] and biocompatibility studies for tissue engineering materials.
    Miyasako H; Yamamoto K; Nakao A; Aoyagi T
    Macromol Biosci; 2007 Jan; 7(1):76-83. PubMed ID: 17238234
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polyelectrolyte multilayer films: effect of the initial anchoring layer on the cell growth.
    Moby V; Kadi A; de Isla N; Stoltz JF; Menu P
    Biomed Mater Eng; 2008; 18(4-5):199-204. PubMed ID: 19065022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives.
    Senaratne W; Andruzzi L; Ober CK
    Biomacromolecules; 2005; 6(5):2427-48. PubMed ID: 16153077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide.
    Reyes CD; García AJ
    J Biomed Mater Res A; 2003 Jun; 65(4):511-23. PubMed ID: 12761842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlling cell behavior through the design of polymer surfaces.
    Alves NM; Pashkuleva I; Reis RL; Mano JF
    Small; 2010 Oct; 6(20):2208-20. PubMed ID: 20848593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl-L-cysteine.
    Harris CA; Resau JH; Hudson EA; West RA; Moon C; Black AD; McAllister JP
    J Biomed Mater Res A; 2011 Sep; 98(3):425-33. PubMed ID: 21630435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration.
    Schmalenberg KE; Uhrich KE
    Biomaterials; 2005 Apr; 26(12):1423-30. PubMed ID: 15482830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of polydimethylsiloxane modification methods for cell response.
    Pakstis LM; Dunkers JP; Zheng A; Vorburger TV; Quinn TP; Cicerone MT
    J Biomed Mater Res A; 2010 Feb; 92(2):604-14. PubMed ID: 19235219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Interaction of cell adhesion to materials in tissue engineering].
    Qin T; Yang Z; Cai S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 1999 Jan; 13(1):31-7. PubMed ID: 12080755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion.
    Chang Y; Liao SC; Higuchi A; Ruaan RC; Chu CW; Chen WY
    Langmuir; 2008 May; 24(10):5453-8. PubMed ID: 18399670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells.
    Dusseiller MR; Schlaepfer D; Koch M; Kroschewski R; Textor M
    Biomaterials; 2005 Oct; 26(29):5917-25. PubMed ID: 15949557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osteopontin presentation affects cell adhesion-Influence of underlying surface chemistry and nanopatterning of osteopontin.
    Malmström J; Christensen B; Lovmand J; Sørensen ES; Duch M; Sutherland DS
    J Biomed Mater Res A; 2010 Nov; 95(2):518-30. PubMed ID: 20665679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.