BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21337597)

  • 1. Analytical strategies for discriminating archeological fatty substances from animal origin.
    Regert M
    Mass Spectrom Rev; 2011; 30(2):177-220. PubMed ID: 21337597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular criteria for discriminating adipose fat and milk from different species by NanoESI MS and MS/MS of their triacylglycerols: application to archaeological remains.
    Mirabaud S; Rolando C; Regert M
    Anal Chem; 2007 Aug; 79(16):6182-92. PubMed ID: 17637040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry.
    Steele VJ; Stern B; Stott AW
    Rapid Commun Mass Spectrom; 2010 Dec; 24(23):3478-84. PubMed ID: 21072805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences.
    Becker JS; Jakubowski N
    Chem Soc Rev; 2009 Jul; 38(7):1969-83. PubMed ID: 19551177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt.
    Copley MS; Bland HA; Rose P; Horton M; Evershed RP
    Analyst; 2005 Jun; 130(6):860-71. PubMed ID: 15912234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry.
    Colombini MP; Andreotti A; Bonaduce I; Modugno F; Ribechini E
    Acc Chem Res; 2010 Jun; 43(6):715-27. PubMed ID: 20180544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria.
    Ribechini E; Modugno F; Colombini MP; Evershed RP
    J Chromatogr A; 2008 Mar; 1183(1-2):158-69. PubMed ID: 18243222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooking activities during the Middle Ages: organic residues in ceramic vessels from the Sant'Antimo Church (Piombino-Central Italy).
    Salvini L; Pecci A; Giorgi G
    J Mass Spectrom; 2008 Jan; 43(1):108-15. PubMed ID: 17724781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of fatty acid profiles and TAGs in vegetable oils by MALDI-TOF/MS fingerprinting.
    Wiesman Z; Chapagain BP
    Methods Mol Biol; 2009; 579():315-36. PubMed ID: 19763483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotope ratio determination in boron analysis.
    Sah RN; Brown PH
    Biol Trace Elem Res; 1998; 66(1-3):39-53. PubMed ID: 10050906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemistry of archaeological animal fats.
    Evershed RP; Dudd SN; Copley MS; Berstan R; Stott AW; Mottram H; Buckley SA; Crossman Z
    Acc Chem Res; 2002 Aug; 35(8):660-8. PubMed ID: 12186571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating animal fats and their origins: assessing the potentials of Fourier transform infrared spectroscopy, gas chromatography, immunoassay and polymerase chain reaction techniques.
    Bellorini S; Strathmann S; Baeten V; Fumière O; Berben G; Tirendi S; von Holst C
    Anal Bioanal Chem; 2005 Jun; 382(4):1073-83. PubMed ID: 15933852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Options for veterinary drug analysis using mass spectrometry.
    Le Bizec B; Pinel G; Antignac JP
    J Chromatogr A; 2009 Nov; 1216(46):8016-34. PubMed ID: 19665721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical strategies for identifying drug metabolites.
    Prakash C; Shaffer CL; Nedderman A
    Mass Spectrom Rev; 2007; 26(3):340-69. PubMed ID: 17405144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of benzenic and halogenated volatile organic compounds in animal-derived food products by one-dimensional and comprehensive two-dimensional gas chromatography-mass spectrometry.
    Ratel J; Engel E
    J Chromatogr A; 2009 Nov; 1216(45):7889-98. PubMed ID: 19782373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different Analytical Procedures for the Study of Organic Residues in Archeological Ceramic Samples with the Use of Gas Chromatography-mass Spectrometry.
    Kałużna-Czaplińska J; Rosiak A; Kwapińska M; Kwapiński W
    Crit Rev Anal Chem; 2016; 46(1):67-81. PubMed ID: 25830900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS.
    Fasciotti M; Pereira Netto AD
    Talanta; 2010 May; 81(3):1116-25. PubMed ID: 20298902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of LC/MS, GC/MS, and LC/NMR hyphenated techniques to identify a drug degradation product in pharmaceutical development.
    Pan C; Liu F; Ji Q; Wang W; Drinkwater D; Vivilecchia R
    J Pharm Biomed Anal; 2006 Feb; 40(3):581-90. PubMed ID: 16242883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MALDI-FT-ICR-MS for archaeological lipid residue analysis.
    Oras E; Vahur S; Isaksson S; Kaljurand I; Leito I
    J Mass Spectrom; 2017 Oct; 52(10):689-700. PubMed ID: 28741297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.
    Touriño S; Fuguet E; Jáuregui O; Saura-Calixto F; Cascante M; Torres JL
    Rapid Commun Mass Spectrom; 2008 Nov; 22(22):3489-500. PubMed ID: 18853405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.