These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 21337673)
1. A Bayesian approach to assessing the uncertainty in estimating bioconcentration factors in earthworms--the example of quinoxyfen. Fragoulis G; Merli A; Reeves G; Meregalli G; Stenberg K; Tanaka T; Capri E Pest Manag Sci; 2011 Jun; 67(6):656-64. PubMed ID: 21337673 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity of Uncinula necator to quinoxyfen: evaluation of isolates selected using a discriminatory dose screen. Green EA; Gustafson GD Pest Manag Sci; 2006 Jun; 62(6):492-7. PubMed ID: 16612812 [TBL] [Abstract][Full Text] [Related]
3. Baseline sensitivity to proquinazid in Blumeria graminis f. sp. tritici and Erysiphe necator and cross-resistance with other fungicides. Genet JL; Jaworska G Pest Manag Sci; 2009 Aug; 65(8):878-84. PubMed ID: 19418441 [TBL] [Abstract][Full Text] [Related]
4. Rationalization of pesticide treatments against powdery mildew of grape. Spera G; La Torre A; Gianferro M; Bugliosi R Commun Agric Appl Biol Sci; 2007; 72(2):315-9. PubMed ID: 18399458 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Quinoxyfen Resistance of Erysiphe necator (Grape Powdery Mildew) in a Single Virginia Vineyard. Feng X; Nita M; Baudoin AB Plant Dis; 2018 Dec; 102(12):2586-2591. PubMed ID: 30307835 [TBL] [Abstract][Full Text] [Related]
6. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
7. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets. Wolf PF; Verreet A Commun Agric Appl Biol Sci; 2008; 73(2):57-68. PubMed ID: 19226742 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity of Podosphaera xanthii populations to anti-powdery-mildew fungicides in Spain. Bellón-Gómez D; Vela-Corcía D; Pérez-García A; Torés JA Pest Manag Sci; 2015 Oct; 71(10):1407-13. PubMed ID: 25418926 [TBL] [Abstract][Full Text] [Related]
9. Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays. Dufour MC; Fontaine S; Montarry J; Corio-Costet MF Pest Manag Sci; 2011 Jan; 67(1):60-9. PubMed ID: 20949585 [TBL] [Abstract][Full Text] [Related]
10. Fate of quinoxyfen residues in grapes, wine, and their processing products. Cabras P; Angioni A; Garau VL; Pirisi FM; Cabitza F; Pala M; Farris GA J Agric Food Chem; 2000 Dec; 48(12):6128-31. PubMed ID: 11312786 [TBL] [Abstract][Full Text] [Related]
11. Quinoxyfen--resistance management and sensitivity monitoring in wheat: 1995-2000. Bernhard U; Leader A; Longhurst C; Felsenstein FG Pest Manag Sci; 2002 Sep; 58(9):972-4. PubMed ID: 12233191 [TBL] [Abstract][Full Text] [Related]
12. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Van Zwieten L; Rust J; Kingston T; Merrington G; Morris S Sci Total Environ; 2004 Aug; 329(1-3):29-41. PubMed ID: 15262156 [TBL] [Abstract][Full Text] [Related]
13. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Eijsackers H; Beneke P; Maboeta M; Louw JP; Reinecke AJ Ecotoxicol Environ Saf; 2005 Sep; 62(1):99-111. PubMed ID: 15978295 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of fungicides with various modes of action in controlling the early stages of an Erysiphe necator-induced epidemic. Deliere L; Miclot AS; Sauris P; Rey P; Calonnec A Pest Manag Sci; 2010 Dec; 66(12):1367-73. PubMed ID: 20949548 [TBL] [Abstract][Full Text] [Related]
15. Persistence and spatial autocorrelation of clones of Erysiphe necator overwintering as mycelium in dormant buds in an isolated vineyard in northern Italy. Cortesi P; Pizzatti C; Bertocchi D; Milgroom MG Phytopathology; 2008 Feb; 98(2):148-52. PubMed ID: 18943190 [TBL] [Abstract][Full Text] [Related]
16. Optimization of plant protection products treatments against Plasmopara viticola. La Torre A; Gianferro M; Spera G Commun Agric Appl Biol Sci; 2008; 73(2):159-68. PubMed ID: 19226753 [TBL] [Abstract][Full Text] [Related]
17. Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil. Schowanek D; David H; Francaviglia R; Hall J; Kirchmann H; Krogh PH; Schraepen N; Smith S; Wildemann T Regul Toxicol Pharmacol; 2007 Dec; 49(3):245-59. PubMed ID: 17967498 [TBL] [Abstract][Full Text] [Related]
18. Assessment of uncertainty in a probabilistic model of consumer exposure to pesticide residues in food. Ferrier H; Shaw G; Nieuwenhuijsen M; Boobis A; Elliott P Food Addit Contam; 2006 Jun; 23(6):601-15. PubMed ID: 16766459 [TBL] [Abstract][Full Text] [Related]
19. A probabilistic approach for estimating the spatial extent of pesticide agricultural use sites and potential co-occurrence with listed species for use in ecological risk assessments. Budreski K; Winchell M; Padilla L; Bang J; Brain RA Integr Environ Assess Manag; 2016 Apr; 12(2):315-27. PubMed ID: 26123940 [TBL] [Abstract][Full Text] [Related]
20. Uranium contents and (235)U/(238)U atom ratios in soil and earthworms in western Kosovo after the 1999 war. Di Lella LA; Nannoni F; Protano G; Riccobono F Sci Total Environ; 2005 Jan; 337(1-3):109-18. PubMed ID: 15626383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]