These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2133785)

  • 21. Effect of storage methods on indentation-based material properties of abdominal organs.
    Lu YC; Untaroiu CD
    Proc Inst Mech Eng H; 2013 Mar; 227(3):293-301. PubMed ID: 23662345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coefficients for solution of the analytical freezing equation in the range of states for rapid solidification of biological systems.
    Diller KR
    Proc Inst Mech Eng H; 1990; 204(3):199-202. PubMed ID: 2133786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parasite cryopreservation by vitrification.
    James ER
    Cryobiology; 2004 Dec; 49(3):201-10. PubMed ID: 15615606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis.
    Leibo SP
    Theriogenology; 2008 Jan; 69(1):37-47. PubMed ID: 18023472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling and optimization of cryopreservation.
    D Benson J
    Methods Mol Biol; 2015; 1257():83-120. PubMed ID: 25428003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cryopreservation of tench, Tinca tinca, sperm: Sperm motility and hatching success of embryos.
    Rodina M; Gela D; Kocour M; Alavi SM; Hulak M; Linhart O
    Theriogenology; 2007 Mar; 67(5):931-40. PubMed ID: 17182092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of specimen cooling rate during impact freezing and liquid-jet freezing of freeze-etch specimens.
    Kopstad G; Elgsaeter A
    Biophys J; 1982 Nov; 40(2):163-70. PubMed ID: 7171712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison between ideal and nonideal solution models for single-cell cryopreservation protocols.
    Saenz J; Toner M; Risco R
    J Phys Chem B; 2009 Apr; 113(14):4853-64. PubMed ID: 19338369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal stress study of two different artery cryopreservation methods.
    Zhang A; Cheng S; Gao D; Xu LX
    Cryo Letters; 2005; 26(2):113-20. PubMed ID: 15897963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation.
    Li W; Zhou X; Wang H; Liu B
    Cryo Letters; 2012; 33(2):144-50. PubMed ID: 22576118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple method to adjust cooling rates for supercooling point determination.
    Carrillo MA; Kaliyan N; Cannon CA; Morey RV; Wilcke WF
    Cryo Letters; 2004; 25(3):155-60. PubMed ID: 15216379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooling rate optimization for zebrafish sperm cryopreservation using a cryomicroscope coupled with SYBR14/PI dual staining.
    Bai C; Wang X; Lu G; Wei L; Liu K; Gao H; Huang C; Dong Q
    Cryobiology; 2013 Oct; 67(2):117-23. PubMed ID: 23747540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effect of Temperature Gradients on Stress Development During Cryopreservation via Vitrification.
    Steif PS; Palastro MC; Rabin Y
    Cell Preserv Technol; 2007; 5(2):104-115. PubMed ID: 18185851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretic considerations regarding slow cooling and vitrification during cryopreservation.
    Liu J; Phy J; Yeomans E
    Theriogenology; 2012 Nov; 78(8):1641-52. PubMed ID: 22818092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'Personalisation' of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects.
    Kim HH; Lee SC
    Cryo Letters; 2012; 33(4):271-9. PubMed ID: 22987238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled rate cooling of fungi using a stirling cycle freezer.
    Ryan MJ; Kasulyte-Creasey D; Kermode A; San SP; Buddie AG
    Cryo Letters; 2014; 35(1):63-9. PubMed ID: 24872159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of cryopreservation of stem cells cultured as neurospheres: comparison between vitrification, slow-cooling and rapid cooling freezing protocols.
    Tan FC; Lee KH; Gouk SS; Magalhaes R; Poonepalli A; Hande MP; Dawe GS; Kuleshova LL
    Cryo Letters; 2007; 28(6):445-60. PubMed ID: 18183325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled ice nucleation in cryopreservation--a review.
    Morris GJ; Acton E
    Cryobiology; 2013 Apr; 66(2):85-92. PubMed ID: 23246475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.