BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21338110)

  • 1. Protein biofortified sorghum: effect of processing into traditional african foods on their protein quality.
    Taylor J; Taylor JR
    J Agric Food Chem; 2011 Mar; 59(6):2386-92. PubMed ID: 21338110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified sorghum.
    Henley EC; Taylor JR; Obukosia SD
    Adv Food Nutr Res; 2010; 60():21-52. PubMed ID: 20691952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion.
    da Silva LS; Taylor J; Taylor JR
    J Agric Food Chem; 2011 Sep; 59(17):9265-70. PubMed ID: 21819142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum.
    Lipkie TE; De Moura FF; Zhao ZY; Albertsen MC; Che P; Glassman K; Ferruzzi MG
    J Agric Food Chem; 2013 Jun; 61(24):5764-71. PubMed ID: 23692305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench).
    Kumar T; Dweikat I; Sato S; Ge Z; Nersesian N; Chen H; Elthon T; Bean S; Ioerger BP; Tilley M; Clemente T
    Plant Biotechnol J; 2012 Jun; 10(5):533-44. PubMed ID: 22353344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can GM sorghum impact Africa?
    Botha GM; Viljoen CD
    Trends Biotechnol; 2008 Feb; 26(2):64-9. PubMed ID: 18191263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum.
    Grootboom AW; Mkhonza NL; Mbambo Z; O'Kennedy MM; da Silva LS; Taylor J; Taylor JR; Chikwamba R; Mehlo L
    Plant Cell Rep; 2014 Mar; 33(3):521-37. PubMed ID: 24442398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins.
    de Mesa-Stonestreet NJ; Alavi S; Bean SR
    J Food Sci; 2010 Jun; 75(5):R90-R104. PubMed ID: 20629895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum.
    Mehlo L; Mbambo Z; Bado S; Lin J; Moagi SM; Buthelezi S; Stoychev S; Chikwamba R
    Mutat Res; 2013 Sep; 749(1-2):66-72. PubMed ID: 23707504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of singular and stacked brown midrib 6 and 12 in the modification of lignocellulose and grain chemistry.
    Sattler SE; Funnell-Harris DL; Pedersen JF
    J Agric Food Chem; 2010 Mar; 58(6):3611-6. PubMed ID: 20175527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of mashing on sorghum proteins and its relationship to ethanol fermentation.
    Zhao R; Bean SR; Ioerger BP; Wang D; Boyle DL
    J Agric Food Chem; 2008 Feb; 56(3):946-53. PubMed ID: 18197621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model.
    Kruger J; Taylor JR; Du X; De Moura FF; Lönnerdal B; Oelofse A
    Food Chem; 2013 Nov; 141(2):1019-25. PubMed ID: 23790881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum.
    Wu Y; Yuan L; Guo X; Holding DR; Messing J
    Nat Commun; 2013; 4():2217. PubMed ID: 23948869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient biofortification of food crops.
    Hirschi KD
    Annu Rev Nutr; 2009; 29():401-21. PubMed ID: 19400753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new allele of γ-kafirin gene coding for a protein with high lysine content in Mexican white sorghum germplasm.
    Chiquito-Almanza E; Ochoa-Zarzosa A; López-Meza JE; Pecina-Quintero V; Nuñez-Colín CA; Anaya-López JL
    J Sci Food Agric; 2016 Aug; 96(10):3342-50. PubMed ID: 26526074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain sorghum proteomics: integrated approach toward characterization of endosperm storage proteins in kafirin allelic variants.
    Cremer JE; Bean SR; Tilley MM; Ioerger BP; Ohm JB; Kaufman RC; Wilson JD; Innes DJ; Gilding EK; Godwin ID
    J Agric Food Chem; 2014 Oct; 62(40):9819-31. PubMed ID: 25177767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritionally Enhanced Sorghum for the Arid and Semiarid Tropical Areas of Africa.
    Zhao ZY; Che P; Glassman K; Albertsen M
    Methods Mol Biol; 2019; 1931():197-207. PubMed ID: 30652292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is there a place for nutrition-sensitive agriculture?
    Wambugu F; Obukosia S; Gaffney J; Kamanga D; Che P; Albertsen MC; Zhao ZY; Ragland L; Yeye M; Kimani E; Aba D; Gidado R; Solomon BO; Njuguna M
    Proc Nutr Soc; 2015 Nov; 74(4):441-8. PubMed ID: 25851095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of genotype and traditional food processing methods on in-vitro protein digestibility and micronutrient profile of sorghum cooked products.
    Weerasooriya DK; Bean SR; Nugusu Y; Ioerger BP; Tesso TT
    PLoS One; 2018; 13(9):e0203005. PubMed ID: 30192773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya.
    Makokha AO; Oniang'o RK; Njoroge SM; Kamar OK
    Food Nutr Bull; 2002 Sep; 23(3 Suppl):241-5. PubMed ID: 12362804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.