BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21338135)

  • 1. High-temperature behavior of cellulose I.
    Matthews JF; Bergenstråhle M; Beckham GT; Himmel ME; Nimlos MR; Brady JW; Crowley MF
    J Phys Chem B; 2011 Mar; 115(10):2155-66. PubMed ID: 21338135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal response in crystalline Ibeta cellulose: a molecular dynamics study.
    Bergenstråhle M; Berglund LA; Mazeau K
    J Phys Chem B; 2007 Aug; 111(30):9138-45. PubMed ID: 17628097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.
    Agarwal V; Huber GW; Conner WC; Auerbach SM
    J Chem Phys; 2011 Oct; 135(13):134506. PubMed ID: 21992323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations reveal conformational changes of methylhydroxyl groups during dissolution of cellulose Iβ in ionic liquid 1-ethyl-3-methylimidazolium acetate.
    Liu H; Cheng G; Kent M; Stavila V; Simmons BA; Sale KL; Singh S
    J Phys Chem B; 2012 Jul; 116(28):8131-8. PubMed ID: 22574852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent changes in hydrogen bonds in cellulose Ialpha studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Ibeta.
    Watanabe A; Morita S; Ozaki Y
    Biomacromolecules; 2007 Sep; 8(9):2969-75. PubMed ID: 17705428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swelling behavior of the cellulose Ibeta crystal models by molecular dynamics.
    Yui T; Nishimura S; Akiba S; Hayashi S
    Carbohydr Res; 2006 Nov; 341(15):2521-30. PubMed ID: 16916499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations.
    Miyamoto H; Umemura M; Aoyagi T; Yamane C; Ueda K; Takahashi K
    Carbohydr Res; 2009 Jun; 344(9):1085-94. PubMed ID: 19375694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose.
    Kokot S; Czarnik-Matusewicz B; Ozaki Y
    Biopolymers; 2002; 67(6):456-69. PubMed ID: 12209453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular origins of twist in cellulose I-beta.
    Bu L; Himmel ME; Crowley MF
    Carbohydr Polym; 2015 Jul; 125():146-52. PubMed ID: 25857969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Ibeta.
    Nishiyama Y; Johnson GP; French AD; Forsyth VT; Langan P
    Biomacromolecules; 2008 Nov; 9(11):3133-40. PubMed ID: 18855441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation studies of the insolubility of cellulose.
    Bergenstråhle M; Wohlert J; Himmel ME; Brady JW
    Carbohydr Res; 2010 Sep; 345(14):2060-6. PubMed ID: 20705283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.
    Oehme DP; Downton MT; Doblin MS; Wagner J; Gidley MJ; Bacic A
    Plant Physiol; 2015 May; 168(1):3-17. PubMed ID: 25786828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on temperature-dependent changes in hydrogen bonds in cellulose Ibeta by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy.
    Watanabe A; Morita S; Ozaki Y
    Biomacromolecules; 2006 Nov; 7(11):3164-70. PubMed ID: 17096547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence.
    Shen T; Langan P; French AD; Johnson GP; Gnanakaran S
    J Am Chem Soc; 2009 Oct; 131(41):14786-94. PubMed ID: 19824731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A priori crystal structure prediction of native celluloses.
    Viëtor RJ; Mazeau K; Lakin M; Pérez S
    Biopolymers; 2000 Oct; 54(5):342-54. PubMed ID: 10935974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and Car-Parrinello molecular dynamics.
    Hayakawa D; Nishiyama Y; Mazeau K; Ueda K
    Carbohydr Res; 2017 Sep; 449():103-113. PubMed ID: 28759814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal and molecular structures of cellulose I and II.
    Kroon-Batenburg LM; Kroon J
    Glycoconj J; 1997 Aug; 14(5):677-90. PubMed ID: 9298703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.
    Matthews JF; Beckham GT; Bergenstråhle-Wohlert M; Brady JW; Himmel ME; Crowley MF
    J Chem Theory Comput; 2012 Feb; 8(2):735-48. PubMed ID: 26596620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation studies of microcrystalline cellulose Ibeta.
    Matthews JF; Skopec CE; Mason PE; Zuccato P; Torget RW; Sugiyama J; Himmel ME; Brady JW
    Carbohydr Res; 2006 Jan; 341(1):138-52. PubMed ID: 16297893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.