BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 21338465)

  • 21. [Formation and diversity of parasitophorous vacuoles in parasitic protozoa. The Coccidia (Sporozoa, Apicomplexa)].
    Beĭer TV; Svezhova NV; Radchenko AI; Sidorenko NV
    Tsitologiia; 2003; 45(4):339-56. PubMed ID: 14520865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subversion of host cellular functions by the apicomplexan parasites.
    Kemp LE; Yamamoto M; Soldati-Favre D
    FEMS Microbiol Rev; 2013 Jul; 37(4):607-31. PubMed ID: 23186105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhoptries: an arsenal of secreted virulence factors.
    Bradley PJ; Sibley LD
    Curr Opin Microbiol; 2007 Dec; 10(6):582-7. PubMed ID: 17997128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Member of the Ferlin Calcium Sensor Family Is Essential for Toxoplasma gondii Rhoptry Secretion.
    Coleman BI; Saha S; Sato S; Engelberg K; Ferguson DJP; Coppens I; Lodoen MB; Gubbels MJ
    mBio; 2018 Oct; 9(5):. PubMed ID: 30279285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis.
    Dowse T; Soldati D
    Curr Opin Microbiol; 2004 Aug; 7(4):388-96. PubMed ID: 15358257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane.
    Sinai AP
    Subcell Biochem; 2008; 47():155-64. PubMed ID: 18512349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide.
    Tonkin ML; Roques M; Lamarque MH; Pugnière M; Douguet D; Crawford J; Lebrun M; Boulanger MJ
    Science; 2011 Jul; 333(6041):463-7. PubMed ID: 21778402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner.
    Saliba KJ; Kirk K
    Int J Parasitol; 2001 Oct; 31(12):1321-30. PubMed ID: 11566300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites.
    Suarez C; Lentini G; Ramaswamy R; Maynadier M; Aquilini E; Berry-Sterkers L; Cipriano M; Chen AL; Bradley P; Striepen B; Boulanger MJ; Lebrun M
    Nat Commun; 2019 Sep; 10(1):4041. PubMed ID: 31492901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites.
    Cao J; Kaneko O; Thongkukiatkul A; Tachibana M; Otsuki H; Gao Q; Tsuboi T; Torii M
    Parasitol Int; 2009 Mar; 58(1):29-35. PubMed ID: 18952195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apical organelles and host-cell invasion by Apicomplexa.
    Dubremetz JF; Garcia-Réguet N; Conseil V; Fourmaux MN
    Int J Parasitol; 1998 Jul; 28(7):1007-13. PubMed ID: 9724870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunolocalization of an osteopontin-like protein in dense granules of Toxoplasma gondii tachyzoites and its association with the parasitophorous vacuole.
    Cortez E; Stumbo AC; Saldanha-Gama R; Villela CG; Barja-Fidalgo C; Rodrigues CA; das Graças Henriques M; Benchimol M; Barbosa HS; Porto LC; Carvalho L
    Micron; 2008; 39(1):25-31. PubMed ID: 17931871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.
    Bradley PJ; Ward C; Cheng SJ; Alexander DL; Coller S; Coombs GH; Dunn JD; Ferguson DJ; Sanderson SJ; Wastling JM; Boothroyd JC
    J Biol Chem; 2005 Oct; 280(40):34245-58. PubMed ID: 16002398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress.
    Beck JR; Fung C; Straub KW; Coppens I; Vashisht AA; Wohlschlegel JA; Bradley PJ
    PLoS Pathog; 2013 Feb; 9(2):e1003162. PubMed ID: 23408890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics and 3D organization of secretory organelles of Toxoplasma gondii.
    Paredes-Santos TC; de Souza W; Attias M
    J Struct Biol; 2012 Feb; 177(2):420-30. PubMed ID: 22155668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conserved complex of microneme proteins mediates rhoptry discharge in Toxoplasma.
    Valleau D; Sidik SM; Godoy LC; Acevedo-Sánchez Y; Pasaje CFA; Huynh MH; Carruthers VB; Niles JC; Lourido S
    EMBO J; 2023 Dec; 42(23):e113155. PubMed ID: 37886905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origins of the parasitophorous vacuole membrane of the malaria parasite: surface area of the parasitized red cell.
    Dluzewski AR; Zicha D; Dunn GA; Gratzer WB
    Eur J Cell Biol; 1995 Dec; 68(4):446-9. PubMed ID: 8690024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms.
    Hoppe HC; Ngô HM; Yang M; Joiner KA
    Nat Cell Biol; 2000 Jul; 2(7):449-56. PubMed ID: 10878811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of proteases in host cell invasion by Toxoplasma gondii and other Apicomplexa.
    Kim K
    Acta Trop; 2004 Jun; 91(1):69-81. PubMed ID: 15158690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network.
    Michelin A; Bittame A; Bordat Y; Travier L; Mercier C; Dubremetz JF; Lebrun M
    Int J Parasitol; 2009 Feb; 39(3):299-306. PubMed ID: 18840447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.