These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 21338480)
1. Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. Gabbianelli R; Scotti R; Ammendola S; Petrarca P; Nicolini L; Battistoni A BMC Microbiol; 2011 Feb; 11():36. PubMed ID: 21338480 [TBL] [Abstract][Full Text] [Related]
2. The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. Petrarca P; Ammendola S; Pasquali P; Battistoni A J Bacteriol; 2010 Mar; 192(6):1553-64. PubMed ID: 20097857 [TBL] [Abstract][Full Text] [Related]
3. Control of zinc homeostasis in Agrobacterium tumefaciens via zur and the zinc uptake genes znuABC and zinT. Bhubhanil S; Sittipo P; Chaoprasid P; Nookabkaew S; Sukchawalit R; Mongkolsuk S Microbiology (Reading); 2014 Nov; 160(Pt 11):2452-2463. PubMed ID: 25227896 [TBL] [Abstract][Full Text] [Related]
4. The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc. Ilari A; Alaleona F; Tria G; Petrarca P; Battistoni A; Zamparelli C; Verzili D; Falconi M; Chiancone E Biochim Biophys Acta; 2014 Jan; 1840(1):535-44. PubMed ID: 24128931 [TBL] [Abstract][Full Text] [Related]
5. Agrobacterium tumefaciens Zur Regulates the High-Affinity Zinc Uptake System TroCBA and the Putative Metal Chaperone YciC, along with ZinT and ZnuABC, for Survival under Zinc-Limiting Conditions. Chaoprasid P; Dokpikul T; Johnrod J; Sirirakphaisarn S; Nookabkaew S; Sukchawalit R; Mongkolsuk S Appl Environ Microbiol; 2016 Jun; 82(12):3503-3514. PubMed ID: 27060116 [TBL] [Abstract][Full Text] [Related]
6. YkgM and ZinT proteins are required for maintaining intracellular zinc concentration and producing curli in enterohemorrhagic Escherichia coli (EHEC) O157:H7 under zinc deficient conditions. Lim J; Lee KM; Kim SH; Kim Y; Kim SH; Park W; Park S Int J Food Microbiol; 2011 Sep; 149(2):159-70. PubMed ID: 21763023 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of E. coli ZinT with one zinc-binding mode and complexed with citrate. Chen J; Wang L; Shang F; Dong Y; Ha NC; Nam KH; Quan C; Xu Y Biochem Biophys Res Commun; 2018 Jun; 500(2):139-144. PubMed ID: 29596824 [TBL] [Abstract][Full Text] [Related]
8. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Ammendola S; Pasquali P; Pistoia C; Petrucci P; Petrarca P; Rotilio G; Battistoni A Infect Immun; 2007 Dec; 75(12):5867-76. PubMed ID: 17923515 [TBL] [Abstract][Full Text] [Related]
9. Novel insights into the metal binding ability of ZinT periplasmic protein from Escherichia coli and Salmonella enterica. Bellotti D; Rowińska-Żyrek M; Remelli M Dalton Trans; 2020 Jul; 49(27):9393-9403. PubMed ID: 32588863 [TBL] [Abstract][Full Text] [Related]
10. Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli. Yatsunyk LA; Easton JA; Kim LR; Sugarbaker SA; Bennett B; Breece RM; Vorontsov II; Tierney DL; Crowder MW; Rosenzweig AC J Biol Inorg Chem; 2008 Feb; 13(2):271-88. PubMed ID: 18027003 [TBL] [Abstract][Full Text] [Related]
11. Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. Berducci G; Mazzetti AP; Rotilio G; Battistoni A FEBS Lett; 2004 Jul; 569(1-3):289-92. PubMed ID: 15225650 [TBL] [Abstract][Full Text] [Related]
12. Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins. Graham AI; Hunt S; Stokes SL; Bramall N; Bunch J; Cox AG; McLeod CW; Poole RK J Biol Chem; 2009 Jul; 284(27):18377-89. PubMed ID: 19377097 [TBL] [Abstract][Full Text] [Related]
13. Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157:H7. Xicohtencatl-Cortes J; Monteiro-Neto V; Ledesma MA; Jordan DM; Francetic O; Kaper JB; Puente JL; Girón JA J Clin Invest; 2007 Nov; 117(11):3519-29. PubMed ID: 17948128 [TBL] [Abstract][Full Text] [Related]
14. The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. D'Orazio M; Mastropasqua MC; Cerasi M; Pacello F; Consalvo A; Chirullo B; Mortensen B; Skaar EP; Ciavardelli D; Pasquali P; Battistoni A Metallomics; 2015 Jun; 7(6):1023-35. PubMed ID: 25751674 [TBL] [Abstract][Full Text] [Related]
15. Escherichia coli O157:H7 strains that persist in feedlot cattle are genetically related and demonstrate an enhanced ability to adhere to intestinal epithelial cells. Carlson BA; Nightingale KK; Mason GL; Ruby JR; Choat WT; Loneragan GH; Smith GC; Sofos JN; Belk KE Appl Environ Microbiol; 2009 Sep; 75(18):5927-37. PubMed ID: 19617387 [TBL] [Abstract][Full Text] [Related]
18. The Escherichia coli O157:H7 carbon starvation-inducible lipoprotein Slp contributes to initial adherence in vitro via the human polymeric immunoglobulin receptor. Fedorchuk C; Kudva IT; Kariyawasam S PLoS One; 2019; 14(6):e0216791. PubMed ID: 31188867 [TBL] [Abstract][Full Text] [Related]
19. Differential binding of Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Torres AG; Jeter C; Langley W; Matthysse AG Appl Environ Microbiol; 2005 Dec; 71(12):8008-15. PubMed ID: 16332780 [TBL] [Abstract][Full Text] [Related]
20. A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Jia T; Liu B; Mu H; Qian C; Wang L; Li L; Lu G; Zhu W; Guo X; Yang B; Huang D; Feng L; Liu B mBio; 2021 Mar; 12(2):. PubMed ID: 33688013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]