These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21338718)

  • 1. An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms.
    Christian Gasser T
    Acta Biomater; 2011 Jun; 7(6):2457-66. PubMed ID: 21338718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.
    Martufi G; Gasser TC
    J Biomech; 2011 Sep; 44(14):2544-50. PubMed ID: 21862020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of proteolytic treatment on plastic deformation of porcine aortic tissue.
    Kratzberg JA; Walker PJ; Rikkers E; Raghavan ML
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):65-72. PubMed ID: 19627809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of growth and rupture of abdominal aortic aneurysm.
    Volokh KY; Vorp DA
    J Biomech; 2008; 41(5):1015-21. PubMed ID: 18255074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics.
    Gasser TC; Gallinetti S; Xing X; Forsell C; Swedenborg J; Roy J
    Acta Biomater; 2012 Aug; 8(8):3091-103. PubMed ID: 22579983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O; Lanir Y
    J Biomech Eng; 2009 Mar; 131(3):031009. PubMed ID: 19154068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy.
    Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA
    J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(7):1324-34. PubMed ID: 15885699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineering, multiscale constitutive model for fiber-forming collagen in tension.
    Annovazzi L; Genna F
    J Biomed Mater Res A; 2010 Jan; 92(1):254-66. PubMed ID: 19180522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive modeling of crimped collagen fibrils in soft tissues.
    Grytz R; Meschke G
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):522-33. PubMed ID: 19627859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models.
    Bischoff JE
    Ann Biomed Eng; 2006 Jul; 34(7):1164-72. PubMed ID: 16773460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanobiology of soft skeletal tissue differentiation--a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications.
    Loboa EG; Wren TA; Beaupré GS; Carter DR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):83-96. PubMed ID: 14586808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for the growth of the abdominal aortic aneurysm.
    Watton PN; Hill NA; Heil M
    Biomech Model Mechanobiol; 2004 Nov; 3(2):98-113. PubMed ID: 15452732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Dec; 128(6):899-908. PubMed ID: 17154692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms.
    Lu J; Zhou X; Raghavan ML
    J Biomech; 2007; 40(3):693-6. PubMed ID: 16542663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.