These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1019 related articles for article (PubMed ID: 21339000)

  • 41. Induced radiation force of an optical line source on a cylinder material exhibiting circular dichroism.
    Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1648-1656. PubMed ID: 31674429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical radiation force expression for a cylinder exhibiting rotary polarization in plane quasi-standing, standing, or progressive waves.
    Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):768-774. PubMed ID: 31045003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computation of the acoustic radiation force using the finite-difference time-domain method.
    Cai F; Meng L; Jiang C; Pan Y; Zheng H
    J Acoust Soc Am; 2010 Oct; 128(4):1617-22. PubMed ID: 20968334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium.
    Annamalai S; Balachandar S; Parmar MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere.
    Baresch D; Thomas JL; Marchiano R
    J Acoust Soc Am; 2013 Jan; 133(1):25-36. PubMed ID: 23297880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field.
    Mitri FG
    Ultrasonics; 2005 Aug; 43(8):681-91. PubMed ID: 15982473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of acoustic radiation forces to position particles within fluid droplets.
    Oberti S; Neild A; Quach R; Dual J
    Ultrasonics; 2009 Jan; 49(1):47-52. PubMed ID: 18590923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
    Ogam E; Fellah ZE; Baki P
    J Acoust Soc Am; 2013 Mar; 133(3):1443-57. PubMed ID: 23464016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acoustic interaction forces between small particles in an ideal fluid.
    Silva GT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere.
    Mitri FG
    Ultrasonics; 2013 Jul; 53(5):956-61. PubMed ID: 23395450
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic scattering characteristics of a thick-walled orthotropic cylindrical shell at oblique incidence.
    Hasheminejad SM; Rajabi M
    Ultrasonics; 2007 Dec; 47(1-4):32-48. PubMed ID: 17669458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of acoustic radiation force on a rigid sphere in a fluid-filled cylindrical cavity with an abruptly changed cross-section.
    Shi J; Li S; Deng Y; Zhang X; Zhang G
    J Acoust Soc Am; 2020 Jan; 147(1):516. PubMed ID: 32006999
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustic radiation force control: Pulsating spherical carriers.
    Rajabi M; Mojahed A
    Ultrasonics; 2018 Feb; 83():146-156. PubMed ID: 28622936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.
    Knoop C; Fritsching U
    Ultrasonics; 2014 Mar; 54(3):763-9. PubMed ID: 24152872
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acoustic field excited by a pulsed laser line source in a cylinder.
    Hu W; Qian M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1187-90. PubMed ID: 16793093
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam.
    Cheng H; Zang W; Zhou W; Tian J
    Opt Express; 2010 Sep; 18(19):20384-94. PubMed ID: 20940930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.