These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21339036)

  • 1. Enzyme kinetics and the maximum entropy production principle.
    Dobovišek A; Zupanović P; Brumen M; Bonačić-Lošić Z; Kuić D; Juretić D
    Biophys Chem; 2011 Mar; 154(2-3):49-55. PubMed ID: 21339036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production.
    Bonačić Lošić Ž; Donđivić T; Juretić D
    J Biol Phys; 2017 Mar; 43(1):69-86. PubMed ID: 28050739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The maximum entropy production requirement for proton transfers enhances catalytic efficiency for β-lactamases.
    Juretić D; Bonačić Lošić Ž; Kuić D; Simunić J; Dobovišek A
    Biophys Chem; 2019 Jan; 244():11-21. PubMed ID: 30448627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.
    Kleidon A
    Naturwissenschaften; 2009 Jun; 96(6):653-77. PubMed ID: 19241052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy conservation and maximal entropy production in enzyme reactions.
    Dobovišek A; Vitas M; Brumen M; Fajmut A
    Biosystems; 2017 Aug; 158():47-56. PubMed ID: 28602731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the six rate constants of a three-state enzymatic network and a noninvasive test of detailed balance.
    Berthoumieux H; Antoine C; Lemarchand A
    J Chem Phys; 2009 Aug; 131(8):084106. PubMed ID: 19725607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling.
    Bernstein NJ; Pratt RF
    Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do intermolecular association phenomena occur in B. cereus beta-lactamase I?
    Amicosante G; Crifò C; Strom R
    Ital J Biochem; 1982; 31(1):1-7. PubMed ID: 6806209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximization principles and daisyworld.
    Ackland GJ
    J Theor Biol; 2004 Mar; 227(1):121-8. PubMed ID: 14969710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic assay of beta-lactamase using circular dichroism spectropolarimetry.
    Long DM
    Anal Biochem; 1997 May; 247(2):389-93. PubMed ID: 9177703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropic estimate of cooperative binding of substrate on a single oligomeric enzyme: an index of cooperativity.
    Banerjee K; Das B; Gangopadhyay G
    J Chem Phys; 2012 Apr; 136(15):154502. PubMed ID: 22519331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis.
    Zhao Q; Kurata H
    J Biosci Bioeng; 2010 Aug; 110(2):254-61. PubMed ID: 20547341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexibility of enzymatic transitions as a hallmark of optimized enzyme steady-state kinetics and thermodynamics.
    Šterk M; Markovič R; Marhl M; Fajmut A; Dobovišek A
    Comput Biol Chem; 2021 Apr; 91():107449. PubMed ID: 33588154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum entropy decomposition of flux distribution at steady state to elementary modes.
    Zhao Q; Kurata H
    J Biosci Bioeng; 2009 Jan; 107(1):84-9. PubMed ID: 19147116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics.
    Liu Q; Wang J
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):923-930. PubMed ID: 31879351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary optimization of enzyme kinetic parameters; effect of constraints.
    Klipp E; Heinrich R
    J Theor Biol; 1994 Dec; 171(3):309-23. PubMed ID: 7869733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Maximum entropy principle and population genetic equilibrium].
    Wang XL; Yuan ZF; Guo MC; Song SD; Zhang QQ; Bao ZM
    Yi Chuan Xue Bao; 2002 Jun; 29(6):562-4. PubMed ID: 12096637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.