These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2133905)
1. Antibacteriophage action on the larvicidal activity of Bacillus thuringiensis H-14 and Bacillus sphaericus against Culex pipiens. Rady MH; Saleh MB; Merdan AI J Egypt Public Health Assoc; 1990; 65(3-4):319-34. PubMed ID: 2133905 [TBL] [Abstract][Full Text] [Related]
2. A field survey of bacteriophage contamination of mosquito breeding places, inhibiting bacterial insecticide. Ali SM; Saleh MB; Merdan AI J Egypt Soc Parasitol; 1993 Aug; 23(2):389-97. PubMed ID: 8376856 [TBL] [Abstract][Full Text] [Related]
3. Effect of Bacillus sphaericus and Bacillus thuringiensis on acid-phosphatase activity of mosquito larvae, Culex pipiens and Aedes caspius. Hussein MA; Hafez JA J Egypt Soc Parasitol; 1989 Jun; 19(1):195-203. PubMed ID: 2565356 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of Bacillus sphaericus and Bacillus thuringiensis var. israelensis for control of Culex pipiens and floodwater Aedes larvae in Iowa. Berry WJ; Novak MG; Khounlo S; Rowley WA; Melchior GL J Am Mosq Control Assoc; 1987 Dec; 3(4):579-82. PubMed ID: 3504943 [TBL] [Abstract][Full Text] [Related]
5. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
6. The introduction into bacillus sphaericus of the Bacillus thuringiensis subsp. medellin Cyt1Ab1 gene results in higher susceptibility of resistant mosquito larva populations to B. sphaericus. Thiéry I; Hamon S; Delécluse A; Orduz S Appl Environ Microbiol; 1998 Oct; 64(10):3910-6. PubMed ID: 9758818 [TBL] [Abstract][Full Text] [Related]
7. Field trials with Vectolex (Bacillus sphaericus) and Vectobac (Bacillus thuringiensis (H-14)) against Anopheles gambiae and Culex quinquefasciatus breeding in Zaire. Karch S; Manzambi ZA; Salaun JJ J Am Mosq Control Assoc; 1991 Jun; 7(2):176-9. PubMed ID: 1895075 [TBL] [Abstract][Full Text] [Related]
8. Isolation of mosquito-pathogenic Bacillus sphaericus & B. thuringiensis from the root surface of hydrophytes. Manonmani AM; Rajendran G; Balaraman K Indian J Med Res; 1991 Mar; 93():111-4. PubMed ID: 1855819 [TBL] [Abstract][Full Text] [Related]
9. Laboratory and simulated field evaluation of a new recombinant of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquito larvae (Diptera: Culicidae). Zahiri NS; Federici BA; Mulla MS J Med Entomol; 2004 May; 41(3):423-9. PubMed ID: 15185945 [TBL] [Abstract][Full Text] [Related]
10. Comparison of development of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in mosquito larvae. Pantuwatana S; Sattabongkot J J Invertebr Pathol; 1990 Mar; 55(2):189-201. PubMed ID: 1969455 [TBL] [Abstract][Full Text] [Related]
11. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Lacey LA J Am Mosq Control Assoc; 2007; 23(2 Suppl):133-63. PubMed ID: 17853604 [TBL] [Abstract][Full Text] [Related]
12. Studies on the efficacy and persistence of the microbial agent bacillus sphaericus against larvae of culex pipiens pallens. Zhen TM; Miao YG; Zhong CH Chin Med J (Engl); 1989 Jun; 102(6):464-8. PubMed ID: 2512071 [TBL] [Abstract][Full Text] [Related]
13. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Bacillus thuringiensis Subsp. Israelensis and Bacillus sphaericus Combination Against Culex pipiens in Highly Vegetated Ditches. Virgillito C; Manica M; Marini G; Rosà R; Della Torre A; Martini S; Drago A; Baseggio A; Caputo B J Am Mosq Control Assoc; 2022 Mar; 38(1):40-45. PubMed ID: 35276728 [TBL] [Abstract][Full Text] [Related]
15. Production & formulation of Bacillus thuringiensis var. israelensis & B. sphaericus 1593. Desai SY; Shethna YI Indian J Med Res; 1991 Sep; 93():318-23. PubMed ID: 1778620 [TBL] [Abstract][Full Text] [Related]
16. The utilization of bacilli as larvicidal agents against anopheline and culicine mosquitoes in Turkey. I. Larvicidal activity of Bacillus thuringiensis serotype H-14. Matur A; Ceber K J Trop Med Hyg; 1988 Oct; 91(5):229-30. PubMed ID: 3184242 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A delta-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Zghal RZ; Tounsi S; Jaoua S Biotechnol Appl Biochem; 2006 Apr; 44(Pt 1):19-25. PubMed ID: 16309381 [TBL] [Abstract][Full Text] [Related]
18. Production of Cry11A and Cry11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations. Servant P; Rosso ML; Hamon S; Poncet S; Del cluse A; Rapoport G Appl Environ Microbiol; 1999 Jul; 65(7):3021-6. PubMed ID: 10388698 [TBL] [Abstract][Full Text] [Related]
19. Highly toxic and broad-spectrum insecticidal local Bacillus strains engineered using protoplast fusion. El-Kawokgy TM; Hussein HA; Aly NA; Mohamed SA Can J Microbiol; 2015 Jan; 61(1):38-47. PubMed ID: 25485592 [TBL] [Abstract][Full Text] [Related]
20. Emergence of resistance and resistance management in field populations of tropical Culex quinquefasciatus to the microbial control agent Bacillus sphaericus. Mulla MS; Thavara U; Tawatsin A; Chomposri J; Su T J Am Mosq Control Assoc; 2003 Mar; 19(1):39-46. PubMed ID: 12674533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]