These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21339066)

  • 1. Extrusion as a pretreatment to increase biogas production.
    Hjorth M; Gränitz K; Adamsen AP; Møller HB
    Bioresour Technol; 2011 Apr; 102(8):4989-94. PubMed ID: 21339066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Corn Straw Extrusion Pretreatment Parameters on Methane Fermentation Performance.
    Kupryaniuk K; Oniszczuk T; Combrzyński M; Czekała W; Matwijczuk A
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32640582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion.
    Bruhn A; Dahl J; Nielsen HB; Nikolaisen L; Rasmussen MB; Markager S; Olesen B; Arias C; Jensen PD
    Bioresour Technol; 2011 Feb; 102(3):2595-604. PubMed ID: 21044839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.
    Wang G; Gavala HN; Skiadas IV; Ahring BK
    Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion.
    Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R
    Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of reactor configuration on biogas production from wheat straw hydrolysate.
    Kaparaju P; Serrano M; Angelidaki I
    Bioresour Technol; 2009 Dec; 100(24):6317-23. PubMed ID: 19647428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogas production from co-digestion of dairy manure and food waste.
    El-Mashad HM; Zhang R
    Bioresour Technol; 2010 Jun; 101(11):4021-8. PubMed ID: 20137909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous biogas production from fodder beet silage as sole substrate.
    Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A
    Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion.
    Menardo S; Cacciatore V; Balsari P
    Bioresour Technol; 2015 Mar; 180():154-61. PubMed ID: 25600012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steam treatment of digested biofibers for increasing biogas production.
    Bruni E; Jensen AP; Angelidaki I
    Bioresour Technol; 2010 Oct; 101(19):7668-71. PubMed ID: 20576571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production.
    Bruni E; Jensen AP; Angelidaki I
    Bioresour Technol; 2010 Nov; 101(22):8713-7. PubMed ID: 20638274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw.
    Gallegos D; Wedwitschka H; Moeller L; Zehnsdorf A; Stinner W
    Bioresour Technol; 2017 Dec; 245(Pt A):216-224. PubMed ID: 28892694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogas and CH(4) productivity by co-digesting swine manure with three crop residues as an external carbon source.
    Wu X; Yao W; Zhu J; Miller C
    Bioresour Technol; 2010 Jun; 101(11):4042-7. PubMed ID: 20138757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 2. Properties of energy carriers and energy yield.
    Richter F; Fricke T; Wachendorf M
    Bioresour Technol; 2011 Apr; 102(7):4866-75. PubMed ID: 21306894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature and active biogas process on passive separation of digested manure.
    Kaparaju P; Angelidaki I
    Bioresour Technol; 2008 Mar; 99(5):1345-52. PubMed ID: 17376673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.
    Bauer A; Bösch P; Friedl A; Amon T
    J Biotechnol; 2009 Jun; 142(1):50-5. PubMed ID: 19480947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass--animal manure mixtures.
    Ahn HK; Smith MC; Kondrad SL; White JW
    Appl Biochem Biotechnol; 2010 Feb; 160(4):965-75. PubMed ID: 19462259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass.
    Khor WC; Rabaey K; Vervaeren H
    Bioresour Technol; 2015 Jan; 176():181-8. PubMed ID: 25461001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.