These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 21339127)
1. Effect of medium composition and kinetic studies on extracellular and intracellular production of L-asparaginase from Pectobacterium carotovorum. Arrivukkarasan S; Muthusivaramapandian M; Aravindan R; Viruthagiri T Food Sci Technol Int; 2010 Apr; 16(2):115-25. PubMed ID: 21339127 [TBL] [Abstract][Full Text] [Related]
2. Development of medium for enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Kumar S; Pakshirajan K; Venkata Dasu V Appl Microbiol Biotechnol; 2009 Sep; 84(3):477-86. PubMed ID: 19352649 [TBL] [Abstract][Full Text] [Related]
3. Assessment of physical process conditions for enhanced production of novel glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Kumar S; Veeranki VD; Pakshirajan K Appl Biochem Biotechnol; 2011 Feb; 163(3):327-37. PubMed ID: 20669055 [TBL] [Abstract][Full Text] [Related]
4. Fermentative production and isolation of L-asparaginase from Erwinia carotovora, EC-113. Maladkar NK; Singh VK; Naik SR Hindustan Antibiot Bull; 1993; 35(1-2):77-86. PubMed ID: 8181956 [TBL] [Abstract][Full Text] [Related]
5. Studies on pH and thermal stability of novel purified L-asparaginase from Pectobacterium carotojorum MTCC 1428. Kumar S; Dasu VV; Pakshirajan K Mikrobiologiia; 2011; 80(3):349-55. PubMed ID: 21861371 [TBL] [Abstract][Full Text] [Related]
6. Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Kumar S; Venkata Dasu V; Pakshirajan K Bioresour Technol; 2011 Jan; 102(2):2077-82. PubMed ID: 20832300 [TBL] [Abstract][Full Text] [Related]
7. Batch and fed-batch bioreactor studies for the enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Kumar S; Prabhu AA; Dasu VV; Pakshirajan K Prep Biochem Biotechnol; 2017 Jan; 47(1):74-80. PubMed ID: 27070115 [TBL] [Abstract][Full Text] [Related]
8. Purification of L-asparaginase from a bacteria Erwinia carotovora and effect of a dihydropyrimidine derivative on some of its kinetic parameters. Kamble VP; Rao RS; Borkar PS; Khobragade CN; Dawane BS Indian J Biochem Biophys; 2006 Dec; 43(6):391-4. PubMed ID: 17285805 [TBL] [Abstract][Full Text] [Related]
9. L-asparaginase production by isolated Staphylococcus sp. - 6A: design of experiment considering interaction effect for process parameter optimization. Prakasham RS; Rao ChS; Rao RS; Lakshmi GS; Sarma PN J Appl Microbiol; 2007 May; 102(5):1382-91. PubMed ID: 17448173 [TBL] [Abstract][Full Text] [Related]
10. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. Xiao JH; Chen DX; Liu JW; Liu ZL; Wan WH; Fang N; Xiao Y; Qi Y; Liang ZQ J Appl Microbiol; 2004; 96(5):1105-16. PubMed ID: 15078528 [TBL] [Abstract][Full Text] [Related]
11. One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora. Krasotkina J; Borisova AA; Gervaziev YV; Sokolov NN Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):215-21. PubMed ID: 15032742 [TBL] [Abstract][Full Text] [Related]
12. Optimization of culture conditions and bench-scale production of anticancer enzyme L-asparaginase by submerged fermentation from Aspergillus terreus CCT 7693. Costa-Silva TA; Camacho-Córdova DI; Agamez-Montalvo GS; Parizotto LA; Sánchez-Moguel I; Pessoa-Jr A Prep Biochem Biotechnol; 2019; 49(1):95-104. PubMed ID: 30488788 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans. Cheng KC; Demirci A; Catchmark JM Food Sci Technol Int; 2011 Apr; 17(2):99-109. PubMed ID: 21421674 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low-cost fermentative medium. Daverey A; Pakshirajan K Appl Biochem Biotechnol; 2010 Apr; 160(7):2090-101. PubMed ID: 19834651 [TBL] [Abstract][Full Text] [Related]
15. Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Rajendran A; Thangavelu V Can J Microbiol; 2007 May; 53(5):643-55. PubMed ID: 17668023 [TBL] [Abstract][Full Text] [Related]
17. Cultural condition affecting the growth and production of beta-galactosidase by Bifidobacterium longum CCRC 15708 in a jar fermenter. Hsu CA; Yu RC; Lee SL; Chou CC Int J Food Microbiol; 2007 May; 116(1):186-9. PubMed ID: 17320993 [TBL] [Abstract][Full Text] [Related]
18. [Media optimization for exopolysaccharide by Pholiota squarrosa (Pers. ex Fr.) Quel. AS 5.245 on submerged fermentation]. Wang YX; Lu ZX; Lü FX Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):414-22. PubMed ID: 15971616 [TBL] [Abstract][Full Text] [Related]
19. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Senthilkumar SR; Ashokkumar B; Chandra Raj K; Gunasekaran P Bioresour Technol; 2005 Aug; 96(12):1380-6. PubMed ID: 15792586 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology. Hymavathi M; Sathish T; Subba Rao Ch; Prakasham RS Appl Biochem Biotechnol; 2009 Oct; 159(1):191-8. PubMed ID: 19052920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]