BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 21339534)

  • 21. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions.
    Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV
    J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kernel-based partial least squares: application to fingerprint-based QSAR with model visualization.
    An Y; Sherman W; Dixon SL
    J Chem Inf Model; 2013 Sep; 53(9):2312-21. PubMed ID: 23901898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors: evaluation of different classification model combinations using bond-based linear indices.
    Casañola-Martín GM; Marrero-Ponce Y; Khan MT; Ather A; Sultan S; Torrens F; Rotondo R
    Bioorg Med Chem; 2007 Feb; 15(3):1483-503. PubMed ID: 17110117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive toxicology modeling: protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions.
    Su BH; Tu YS; Esposito EX; Tseng YJ
    J Chem Inf Model; 2012 Jun; 52(6):1660-73. PubMed ID: 22642982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feature selection methods in QSAR studies.
    Goodarzi M; Dejaegher B; Vander Heyden Y
    J AOAC Int; 2012; 95(3):636-51. PubMed ID: 22816254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations.
    Stahura FL; Godden JW; Xue L; Bajorath J
    J Chem Inf Comput Sci; 2000; 40(5):1245-52. PubMed ID: 11045820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors.
    Fatemi MH; Heidari A; Gharaghani S
    J Theor Biol; 2015 Mar; 369():13-22. PubMed ID: 25600056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting multiple binding modes using a kernel method based on a vector space model molecular descriptor.
    Burkowski FJ; Wong WW
    Int J Comput Biol Drug Des; 2009; 2(1):58-80. PubMed ID: 20054986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ensemble feature selection: consistent descriptor subsets for multiple QSAR models.
    Dutta D; Guha R; Wild D; Chen T
    J Chem Inf Model; 2007; 47(3):989-97. PubMed ID: 17407280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships.
    Sutherland JJ; O'Brien LA; Weaver DF
    J Chem Inf Comput Sci; 2003; 43(6):1906-15. PubMed ID: 14632439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting Multiple Descriptor Sets in QSAR Studies.
    Tomal JH; Welch WJ; Zamar RH
    J Chem Inf Model; 2016 Mar; 56(3):501-9. PubMed ID: 26906936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability.
    Ingle BL; Veber BC; Nichols JW; Tornero-Velez R
    J Chem Inf Model; 2016 Nov; 56(11):2243-2252. PubMed ID: 27684444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR).
    Khan PM; Roy K
    Expert Opin Drug Discov; 2018 Dec; 13(12):1075-1089. PubMed ID: 30372648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSAR--how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets.
    Gedeck P; Rohde B; Bartels C
    J Chem Inf Model; 2006; 46(5):1924-36. PubMed ID: 16995723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of methods for modeling quantitative structure-activity relationships.
    Sutherland JJ; O'Brien LA; Weaver DF
    J Med Chem; 2004 Oct; 47(22):5541-54. PubMed ID: 15481990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of MLR and SVM Aided QSAR Models to Identify Common SAR of GABA Uptake Herbal Inhibitors used in the Treatment of Schizophrenia.
    Marunnan SM; Pulikkal BP; Jabamalairaj A; Bandaru S; Yadav M; Nayarisseri A; Doss VA
    Curr Neuropharmacol; 2017 Nov; 15(8):1085-1092. PubMed ID: 27919211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The great descriptor melting pot: mixing descriptors for the common good of QSAR models.
    Tseng YJ; Hopfinger AJ; Esposito EX
    J Comput Aided Mol Des; 2012 Jan; 26(1):39-43. PubMed ID: 22200979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural findings of phenylindoles as cytotoxic antimitotic agents in human breast cancer cell lines through multiple validated QSAR studies.
    Adhikari N; Halder AK; Saha A; Das Saha K; Jha T
    Toxicol In Vitro; 2015 Oct; 29(7):1392-404. PubMed ID: 26026499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kernel approach to molecular similarity based on iterative graph similarity.
    Rupp M; Proschak E; Schneider G
    J Chem Inf Model; 2007; 47(6):2280-6. PubMed ID: 17985866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.