These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 21339534)

  • 61. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships.
    Schultz TW; Cronin MT
    Environ Toxicol Chem; 2003 Mar; 22(3):599-607. PubMed ID: 12627648
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods.
    Lv W; Xue Y
    Eur J Med Chem; 2010 Mar; 45(3):1167-72. PubMed ID: 20053484
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients.
    Banerjee A; Roy K
    Chem Res Toxicol; 2023 Sep; 36(9):1518-1531. PubMed ID: 37584642
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modelling inhalational anaesthetics using bayesian feature selection and QSAR modelling methods.
    Manallack DT; Burden FR; Winkler DA
    ChemMedChem; 2010 Aug; 5(8):1318-23. PubMed ID: 20540061
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Application of MOLMAP approach for QSAR modeling of various biological activities using substituent electronic descriptors.
    Hemmateenejad B; Mehdipour AR; Miri R; Shamsipur M
    J Comput Chem; 2009 Oct; 30(13):2001-9. PubMed ID: 19130500
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Combinatorial QSAR modeling of human intestinal absorption.
    Suenderhauf C; Hammann F; Maunz A; Helma C; Huwyler J
    Mol Pharm; 2011 Feb; 8(1):213-24. PubMed ID: 21142073
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analysing molecular polar surface descriptors to predict blood-brain barrier permeation.
    Shityakov S; Neuhaus W; Dandekar T; Förster C
    Int J Comput Biol Drug Des; 2013; 6(1-2):146-56. PubMed ID: 23428480
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impact of geometry optimization methods on QSAR modelling: A case study for predicting human serum albumin binding affinity.
    Önlü S; Türker Saçan M
    SAR QSAR Environ Res; 2017 Jun; 28(6):491-509. PubMed ID: 28705017
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions.
    Wang C; Skibic MJ; Higgs RE; Watson IA; Bui H; Wang J; Cintron JM
    J Chromatogr A; 2009 Jun; 1216(25):5030-8. PubMed ID: 19439313
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative sequence-activity model analysis of oligopeptides coupling an improved high-dimension feature selection method with support vector regression.
    Wang L; Dai Z; Zhang H; Bai L; Yuan Z
    Chem Biol Drug Des; 2014 Apr; 83(4):379-91. PubMed ID: 24125163
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Theoretically-derived molecular descriptors important in human intestinal absorption.
    Agatonovic-Kustrin S; Beresford R; Yusof AP
    J Pharm Biomed Anal; 2001 May; 25(2):227-37. PubMed ID: 11275432
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.
    Kennicutt AR; Morkowchuk L; Krein M; Breneman CM; Kilduff JE
    SAR QSAR Environ Res; 2016 Aug; 27(8):653-76. PubMed ID: 27586364
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular descriptors that influence the amount of drugs transfer into human breast milk.
    Agatonovic-Kustrin S; Ling LH; Tham SY; Alany RG
    J Pharm Biomed Anal; 2002 Jun; 29(1-2):103-19. PubMed ID: 12062670
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery.
    Ponzoni I; Sebastián-Pérez V; Requena-Triguero C; Roca C; Martínez MJ; Cravero F; Díaz MF; Páez JA; Arrayás RG; Adrio J; Campillo NE
    Sci Rep; 2017 May; 7(1):2403. PubMed ID: 28546583
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Descriptors and their selection methods in QSAR analysis: paradigm for drug design.
    Danishuddin ; Khan AU
    Drug Discov Today; 2016 Aug; 21(8):1291-302. PubMed ID: 27326911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction.
    Zhang D; Xiao J; Zhou N; Zheng M; Luo X; Jiang H; Chen K
    Biomed Res Int; 2015; 2015():292683. PubMed ID: 26504797
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Why QSAR fails: an empirical evaluation using conventional computational approach.
    Huang J; Fan X
    Mol Pharm; 2011 Apr; 8(2):600-8. PubMed ID: 21370915
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A review on principles, theory and practices of 2D-QSAR.
    Roy K; Das RN
    Curr Drug Metab; 2014; 15(4):346-79. PubMed ID: 25204823
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Prediction of drug induced liver injury using molecular and biological descriptors.
    Muller C; Pekthong D; Alexandre E; Marcou G; Horvath D; Richert L; Varnek A
    Comb Chem High Throughput Screen; 2015; 18(3):315-22. PubMed ID: 25747442
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Descriptor Selection Improvements for Quantitative Structure-Activity Relationships.
    Xia LY; Wang QY; Cao Z; Liang Y
    Int J Neural Syst; 2019 Nov; 29(9):1950016. PubMed ID: 31390912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.