These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 21339538)
1. SCJ: a breakpoint-like distance that simplifies several rearrangement problems. Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1318-29. PubMed ID: 21339538 [TBL] [Abstract][Full Text] [Related]
2. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions. Xu AW J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404 [TBL] [Abstract][Full Text] [Related]
3. Rearrangement-based phylogeny using the Single-Cut-or-Join operation. Biller P; Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):122-34. PubMed ID: 23702549 [TBL] [Abstract][Full Text] [Related]
5. On the complexity of rearrangement problems under the breakpoint distance. Kováč J J Comput Biol; 2014 Jan; 21(1):1-15. PubMed ID: 24200391 [TBL] [Abstract][Full Text] [Related]
6. Extending the algebraic formalism for genome rearrangements to include linear chromosomes. Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378 [TBL] [Abstract][Full Text] [Related]
7. Multichromosomal median and halving problems under different genomic distances. Tannier E; Zheng C; Sankoff D BMC Bioinformatics; 2009 Apr; 10():120. PubMed ID: 19386099 [TBL] [Abstract][Full Text] [Related]
8. Computation of perfect DCJ rearrangement scenarios with linear and circular chromosomes. Bérard S; Chateau A; Chauve C; Paul C; Tannier E J Comput Biol; 2009 Oct; 16(10):1287-309. PubMed ID: 19803733 [TBL] [Abstract][Full Text] [Related]
9. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes. Bhatia S; Egri-Nagy A; Francis AR J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846 [TBL] [Abstract][Full Text] [Related]
10. Sorting Linear Genomes with Rearrangements and Indels. Braga MD; Stoye J IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):500-6. PubMed ID: 26357261 [TBL] [Abstract][Full Text] [Related]
11. Algorithms for sorting unsigned linear genomes by the DCJ operations. Jiang H; Zhu B; Zhu D Bioinformatics; 2011 Feb; 27(3):311-6. PubMed ID: 21134895 [TBL] [Abstract][Full Text] [Related]
15. On the rank-distance median of 3 permutations. Chindelevitch L; Pereira Zanetti JP; Meidanis J BMC Bioinformatics; 2018 May; 19(Suppl 6):142. PubMed ID: 29745865 [TBL] [Abstract][Full Text] [Related]
16. Genome halving and double distance with losses. Savard OT; Gagnon Y; Bertrand D; El-Mabrouk N J Comput Biol; 2011 Sep; 18(9):1185-99. PubMed ID: 21899424 [TBL] [Abstract][Full Text] [Related]
17. An exact solver for the DCJ median problem. Zhang M; Arndt W; Tang J Pac Symp Biocomput; 2009; ():138-49. PubMed ID: 19209699 [TBL] [Abstract][Full Text] [Related]
18. An approximation algorithm for the minimum breakpoint linearization problem. Chen X; Cui Y IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):401-9. PubMed ID: 19644168 [TBL] [Abstract][Full Text] [Related]
19. The distance and median problems in the single-cut-or-join model with single-gene duplications. Mane AC; Lafond M; Feijao PC; Chauve C Algorithms Mol Biol; 2020; 15():8. PubMed ID: 32391071 [TBL] [Abstract][Full Text] [Related]
20. The solution space of sorting by DCJ. Braga MD; Stoye J J Comput Biol; 2010 Sep; 17(9):1145-65. PubMed ID: 20874401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]