These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21339589)

  • 1. Mathematical modeling and simulation of nanopore blocking by precipitation.
    Wolfram MT; Burger M; Siwy ZS
    J Phys Condens Matter; 2010 Nov; 22(45):454101. PubMed ID: 21339589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driven polymer transport through a nanopore controlled by a rotating electric field: off-lattice computer simulations.
    Tsai YS; Chen CM
    J Chem Phys; 2007 Apr; 126(14):144910. PubMed ID: 17444746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current oscillations generated by precipitate formation in the mixing zone between two solutions inside a nanopore.
    Yusko EC; Billeh YN; Mayer M
    J Phys Condens Matter; 2010 Nov; 22(45):454127. PubMed ID: 21339613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force.
    Oukhaled A; Cressiot B; Bacri L; Pastoriza-Gallego M; Betton JM; Bourhis E; Jede R; Gierak J; Auvray L; Pelta J
    ACS Nano; 2011 May; 5(5):3628-38. PubMed ID: 21476590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity of polymer translocation through a pore.
    Kejian D; Furu Z; Dongqin C; Zengliang Y
    Biochem Biophys Res Commun; 2006 Mar; 341(1):139-42. PubMed ID: 16414016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driven translocation of a polynucleotide chain through a nanopore: a continuous time Monte Carlo study.
    Lam PM; Liu F; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011911. PubMed ID: 16907131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoprecipitation-assisted ion current oscillations.
    Powell MR; Sullivan M; Vlassiouk I; Constantin D; Sudre O; Martens CC; Eisenberg RS; Siwy ZS
    Nat Nanotechnol; 2008 Jan; 3(1):51-7. PubMed ID: 18654451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation study on the translocation of polymer chains through nanopores.
    Chen YC; Wang C; Luo MB
    J Chem Phys; 2007 Jul; 127(4):044904. PubMed ID: 17672722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions.
    Ramírez P; Gómez V; Cervera J; Schiedt B; Mafé S
    J Chem Phys; 2007 May; 126(19):194703. PubMed ID: 17523824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and simulation of nanoparticle separation through a solid-state nanopore.
    Jubery TZ; Prabhu AS; Kim MJ; Dutta P
    Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective driving force applied on DNA inside a solid-state nanopore.
    Lu B; Hoogerheide DP; Zhao Q; Yu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011921. PubMed ID: 23005466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of ionic current through the nanopore in a double-layered semiconductor membrane.
    Nikolaev A; Gracheva ME
    Nanotechnology; 2011 Apr; 22(16):165202. PubMed ID: 21393823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of orientation in translocation of polymers through nanopores.
    Kotsev S; Kolomeisky AB
    J Chem Phys; 2006 Aug; 125(8):084906. PubMed ID: 16965056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field-controlled water permeation coupled to ion transport through a nanopore.
    Dzubiella J; Allen RJ; Hansen JP
    J Chem Phys; 2004 Mar; 120(11):5001-4. PubMed ID: 15267365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteropolymer translocation through nanopores.
    Luo K; Ala-Nissila T; Ying SC; Bhattacharya A
    J Chem Phys; 2007 Apr; 126(14):145101. PubMed ID: 17444750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach.
    Gauthier MG; Slater GW
    J Chem Phys; 2008 Feb; 128(6):065103. PubMed ID: 18282074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular switch for tuning ions across nanopores by an external electric field.
    Gong X; Li J; Guo C; Xu K; Yang H
    Nanotechnology; 2013 Jan; 24(2):025502. PubMed ID: 23237863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise and bandwidth of current recordings from submicrometer pores and nanopores.
    Uram JD; Ke K; Mayer M
    ACS Nano; 2008 May; 2(5):857-72. PubMed ID: 19206482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic responses of polyelectrolyte brushes under external electric field.
    Ouyang H; Xia Z; Zhe J
    Nanotechnology; 2009 May; 20(19):195703. PubMed ID: 19420647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of attractive polymer-pore interactions on translocation dynamics.
    Chen YC; Wang C; Zhou YL; Luo MB
    J Chem Phys; 2009 Feb; 130(5):054902. PubMed ID: 19206990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.