These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 21339606)
41. Computer simulations and theory of protein translocation. Makarov DE Acc Chem Res; 2009 Feb; 42(2):281-9. PubMed ID: 19072704 [TBL] [Abstract][Full Text] [Related]
42. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Vercoutere W; Winters-Hilt S; Olsen H; Deamer D; Haussler D; Akeson M Nat Biotechnol; 2001 Mar; 19(3):248-52. PubMed ID: 11231558 [TBL] [Abstract][Full Text] [Related]
43. Sequence dependence of charge transport properties of DNA. Nogues C; Cohen SR; Daube S; Apter N; Naaman R J Phys Chem B; 2006 May; 110(18):8910-3. PubMed ID: 16671692 [TBL] [Abstract][Full Text] [Related]
44. Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Zhao Q; Comer J; Dimitrov V; Yemenicioglu S; Aksimentiev A; Timp G Nucleic Acids Res; 2008 Mar; 36(5):1532-41. PubMed ID: 18208842 [TBL] [Abstract][Full Text] [Related]
45. Unzipping of DNA with correlated base sequence. Allahverdyan AE; Gevorkian ZhS; Hu CK; Wu MC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061908. PubMed ID: 15244618 [TBL] [Abstract][Full Text] [Related]
46. Effective driving force applied on DNA inside a solid-state nanopore. Lu B; Hoogerheide DP; Zhao Q; Yu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011921. PubMed ID: 23005466 [TBL] [Abstract][Full Text] [Related]
47. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. Oukhaled A; Cressiot B; Bacri L; Pastoriza-Gallego M; Betton JM; Bourhis E; Jede R; Gierak J; Auvray L; Pelta J ACS Nano; 2011 May; 5(5):3628-38. PubMed ID: 21476590 [TBL] [Abstract][Full Text] [Related]
48. Nanopore force spectroscopy on DNA duplexes. Jetha NN; Wiggin M; Marziali A Methods Mol Biol; 2009; 544():129-50. PubMed ID: 19488698 [TBL] [Abstract][Full Text] [Related]
49. Direct visualization of transient thermal response of a DNA origami. Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845 [TBL] [Abstract][Full Text] [Related]
51. Force-dependent fragility in RNA hairpins. Manosas M; Collin D; Ritort F Phys Rev Lett; 2006 Jun; 96(21):218301. PubMed ID: 16803276 [TBL] [Abstract][Full Text] [Related]
52. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Li PT; Collin D; Smith SB; Bustamante C; Tinoco I Biophys J; 2006 Jan; 90(1):250-60. PubMed ID: 16214869 [TBL] [Abstract][Full Text] [Related]
54. Nanopore Detector based analysis of single-molecule conformational kinetics and binding interactions. Winters-Hilt S BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S21. PubMed ID: 17118143 [TBL] [Abstract][Full Text] [Related]
55. Control and reversal of the electrophoretic force on DNA in a charged nanopore. Luan B; Aksimentiev A J Phys Condens Matter; 2010 Nov; 22(45):454123. PubMed ID: 21339610 [TBL] [Abstract][Full Text] [Related]
56. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores. Stachiewicz A; Molski A J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623 [TBL] [Abstract][Full Text] [Related]
57. Statistical theory of force-induced unzipping of DNA. Singh N; Singh Y Eur Phys J E Soft Matter; 2005 May; 17(1):7-19. PubMed ID: 15864723 [TBL] [Abstract][Full Text] [Related]
58. A new computational approach for mechanical folding kinetics of RNA hairpins. Cao S; Chen SJ Biophys J; 2009 May; 96(10):4024-34. PubMed ID: 19450474 [TBL] [Abstract][Full Text] [Related]
59. Effect of loop sequence on unzipping of short DNA hairpins. Upadhyaya A; Kumar S Phys Rev E; 2021 Jun; 103(6-1):062411. PubMed ID: 34271739 [TBL] [Abstract][Full Text] [Related]