BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21339851)

  • 1. Evaluation of Robotic Needle Steering in ex vivo Tissue.
    Majewicz A; Wedlick TR; Reed KB; Okamura AM
    IEEE Int Conf Robot Autom; 2010 May; 2010():2068-2073. PubMed ID: 21339851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of tip-steerable needles in ex vivo and in vivo tissue.
    Majewicz A; Marra SP; van Vledder MG; Lin M; Choti MA; Song DY; Okamura AM
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2705-15. PubMed ID: 22711767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for Improving the Curvature of Steerable Needles in Biological Tissue.
    Adebar TK; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1167-77. PubMed ID: 26441438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling Steerability from Diameter: Helical Dovetail Laser Patterning for Steerable Needles.
    Rox M; Emerson M; Ertop TE; Fried I; Fu M; Hoelscher J; Kuntz A; Granna J; Mitchell J; Lester M; Maldonado F; Gillaspie EA; Akulian JA; Alterovitz R; Webster RJ
    IEEE Access; 2020; 8():181411-181419. PubMed ID: 35198341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of pre-curved needles for steering in tissue.
    Wedlick TR; Okamura AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1200-3. PubMed ID: 19963994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of a novel steerable probe with a programmable bevel tip inspired by nature.
    Frasson L; Ferroni F; Ko SY; Dogangil G; Rodriguez Y Baena F
    J Robot Surg; 2012 Sep; 6(3):189-97. PubMed ID: 27638271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Robotic Steering of Flexible Needles from 3D Ultrasound Images in Phantoms and Ex Vivo Biological Tissue.
    Mignon P; Poignet P; Troccaz J
    Ann Biomed Eng; 2018 Sep; 46(9):1385-1396. PubMed ID: 29845413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip Design for Safety of Steerable Needles for Robot-Controlled Brain Insertion.
    Lehocky CA; Fellows-Mayle W; Engh JA; Riviere CN
    Robot Surg; 2017; 4():107-114. PubMed ID: 29170740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Articulated Robotic Needle Achieves Distributed Ablation of Liver Tissue.
    Gerboni G; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Robot Autom Lett; 2017 Jul; 2(3):1367-1374. PubMed ID: 28664186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel curvature-controllable steerable needle for percutaneous intervention.
    Bui VK; Park S; Park JO; Ko SY
    Proc Inst Mech Eng H; 2016 Aug; 230(8):727-38. PubMed ID: 27206444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.
    Datla NV; Konh B; Honarvar M; Podder TK; Dicker AP; Yu Y; Hutapea P
    Med Eng Phys; 2014 Mar; 36(3):285-93. PubMed ID: 24296105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic-Assisted Needle Steering Around Anatomical Obstacles Using Notched Steerable Needles.
    Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1917-1928. PubMed ID: 29990280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexure-based steerable needle: high curvature with reduced tissue damage.
    Swaney PJ; Burgner J; Gilbert HB; Webster RJ
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):906-9. PubMed ID: 23204267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive finite element model for steerable needles.
    Terzano M; Dini D; Rodriguez Y Baena F; Spagnoli A; Oldfield M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1809-1825. PubMed ID: 32152795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image Guidance of Flexible Tip-Steerable Needles.
    Kallem V; Cowan NJ
    IEEE Trans Robot; 2009 Feb; 25(1):191-196. PubMed ID: 20431694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of Flexible Needles Robotically Steered through Soft Tissue.
    Misra S; Reed KB; Schafer BW; Ramesh KT; Okamura AM
    Int J Rob Res; 2010 Nov; 29(13):1640-1660. PubMed ID: 21170164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and experimental studies in needle-tissue interactions.
    Konh B; Honarvar M; Darvish K; Hutapea P
    J Clin Monit Comput; 2017 Aug; 31(4):861-872. PubMed ID: 27430491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor.
    Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M
    Ann Biomed Eng; 2017 Apr; 45(4):924-938. PubMed ID: 27646146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endpoint Accuracy in Manual Control of a Steerable Needle.
    van de Berg NJ; Dankelman J; van den Dobbelsteen JJ
    J Vasc Interv Radiol; 2017 Feb; 28(2):276-283.e2. PubMed ID: 27720573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles.
    Misra S; Reed KB; Douglas AS; Ramesh KT; Okamura AM
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2008 Oct; ():224-231. PubMed ID: 22020139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.