BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21339874)

  • 1. Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues.
    Hayakawa CK; Potma EO; Venugopalan V
    Biomed Opt Express; 2011 Jan; 2(2):278-90. PubMed ID: 21339874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude and phase of tightly focused laser beams in turbid media.
    Hayakawa CK; Venugopalan V; Krishnamachari VV; Potma EO
    Phys Rev Lett; 2009 Jul; 103(4):043903. PubMed ID: 19659354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging.
    Cai F; He S
    J Biomed Opt; 2014 Jan; 19(1):11022. PubMed ID: 24464046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the evolution of circular polarized light backscattered from turbid tissue-like disperse medium utilizing generalized Monte Carlo modeling approach with a combined use of Jones and Stokes-Mueller formalisms.
    Lopushenko I; Sieryi O; Bykov A; Meglinski I
    J Biomed Opt; 2024 May; 29(5):052913. PubMed ID: 38089555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation with a focused, pulsed optical beam in scattering media: diffraction effects.
    Daria VR; Saloma C; Kawata S
    Appl Opt; 2000 Oct; 39(28):5244-55. PubMed ID: 18354521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission matrix-based Electric field Monte Carlo study and experimental validation of the propagation characteristics of Bessel beams in turbid media.
    Zhu X; Lu L; Cao Z; Zeng B; Xu M
    Opt Lett; 2018 Oct; 43(19):4835-4838. PubMed ID: 30272752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles.
    Ranasinghesagara JC; Hayakawa CK; Davis MA; Dunn AK; Potma EO; Venugopalan V
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1520-30. PubMed ID: 25121440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confocal microscopy in turbid media.
    Schmitt JM; Knüttel A; Yadlowsky M
    J Opt Soc Am A Opt Image Sci Vis; 1994 Aug; 11(8):2226-35. PubMed ID: 7931759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Raman scattering including detector parameters and sampling volume.
    Krasnikov I; Seteikin A; Kniggendorf AK; Meinhardt-Wollweber M; Roth B
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2138-2144. PubMed ID: 29240087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements.
    Scott AJ; Nahum AE; Fenwick JD
    Med Phys; 2009 Jul; 36(7):3132-44. PubMed ID: 19673212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the influence of Bessel beams on image quality in optical coherence tomography.
    Curatolo A; Munro PRT; Lorenser D; Sreekumar P; Singe CC; Kennedy BF; Sampson DD
    Sci Rep; 2016 Mar; 6():23483. PubMed ID: 27009371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals.
    Ranasinghesagara JC; De Vito G; Piazza V; Potma EO; Venugopalan V
    Opt Express; 2017 Apr; 25(8):8638-8652. PubMed ID: 28437941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the tight focusing of beams in absorbing media with Monte Carlo simulations.
    Brandes AR; Elmaklizi A; Akarçay HG; Kienle A
    J Biomed Opt; 2014; 19(11):115003. PubMed ID: 25393966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focal shift in tightly focused hybridly polarized Laguerre-Gaussian vector beams with zero radial index.
    Chen Y; Huang S; Chen M; Liu X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1585-1591. PubMed ID: 30183014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field Monte Carlo simulation of polarized light propagation in turbid media.
    Xu M
    Opt Express; 2004 Dec; 12(26):6530-9. PubMed ID: 19488304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal visualization of femtosecond laser pulses with single-edge transport in turbid media via Monte Carlo simulation.
    Ren Y; Jian J; Tan W; Wang J; Chen T; Xia W
    Opt Lett; 2021 May; 46(10):2284-2287. PubMed ID: 33988565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.
    Chen Y; Liu JT
    J Biomed Opt; 2013 Jun; 18(6):066006. PubMed ID: 23733022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.