BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21339874)

  • 21. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.
    Ronga MG; Deut U; Bonfrate A; De Marzi L
    Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation.
    Gan X; Gu M
    Appl Opt; 2000 Apr; 39(10):1575-9. PubMed ID: 18345054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of phase-optimized light beams in two-dimensional scattering media.
    Ott F; Fritzsche N; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2410-2421. PubMed ID: 36520764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the scattering coefficient of turbid media from two-photon microscopy.
    Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y
    Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the imaging performance of light sheet microscopies in highly scattering tissues.
    Glaser AK; Wang Y; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):454-66. PubMed ID: 26977355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propagation of focused and multibeam laser energy in biological tissue.
    Fowler AJ; Menguc MP
    J Biomech Eng; 2000 Oct; 122(5):534-40. PubMed ID: 11091957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence.
    Tong R; Dong Z; Chen Y; Wang F; Cai Y; Setälä T
    Opt Express; 2020 Mar; 28(7):9713-9727. PubMed ID: 32225573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding of transverse spin angular momentum in tightly focused linearly polarized vortex beams.
    Zhang X; Shen B; Zhu Z; Rui G; He J; Cui Y; Gu B
    Opt Express; 2022 Feb; 30(4):5121-5130. PubMed ID: 35209481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absorption distribution of an optical beam focused into a turbid medium.
    Wang LV; Liang G
    Appl Opt; 1999 Aug; 38(22):4951-8. PubMed ID: 18323985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs.
    Pattelli L; Mazzamuto G
    J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35655345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2009 Aug; 17(16):13792-809. PubMed ID: 19654786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Lambertian surface scattering on the spatially resolved reflectance from turbid media: a computational study.
    Lindner B; Foschum F; Kienle A
    Appl Opt; 2022 Apr; 61(10):2775-2787. PubMed ID: 35471353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.