These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21339874)

  • 41. Two-color excitation fluorescence microscopy through highly scattering media.
    Blanca CM; Saloma C
    Appl Opt; 2001 Jun; 40(16):2722-9. PubMed ID: 18357289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On Monte Carlo modeling of megavoltage photon beams: a revisited study on the sensitivity of beam parameters.
    Chibani O; Moftah B; Ma CM
    Med Phys; 2011 Jan; 38(1):188-201. PubMed ID: 21361187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical Goniometer Paired with Digital Monte Carlo Twin to Determine the Optical Properties of Turbid Media.
    Stolz L; Beutel B; Kienle A; Foschum F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective Mie scattering of a spherical fractal aggregate and its application in turbid media.
    Deng X; Gan X; Gu M
    Appl Opt; 2004 May; 43(14):2925-9. PubMed ID: 15143819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tightly focused optical field with controllable photonic spin orientation.
    Chen J; Wan C; Kong LJ; Zhan Q
    Opt Express; 2017 Aug; 25(16):19517-19528. PubMed ID: 29041145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium.
    Wang L; Jacques SL
    Appl Opt; 1995 May; 34(13):2362-6. PubMed ID: 21037790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Focusing by a high numerical aperture lens of distributions generated by conical diffraction.
    Rosset S; Fallet C; Sirat GY
    Opt Lett; 2014 Dec; 39(23):6569-72. PubMed ID: 25490623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical evaluation of temporal focusing characteristics in transparent and scattering media.
    Dana H; Shoham S
    Opt Express; 2011 Mar; 19(6):4937-48. PubMed ID: 21445129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities.
    Chen Y; Liu JT
    Biomed Opt Express; 2015 Apr; 6(4):1318-30. PubMed ID: 25909015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.
    Favre-Bulle IA; Preece D; Nieminen TA; Heap LA; Scott EK; Rubinsztein-Dunlop H
    Sci Rep; 2015 Jun; 5():11501. PubMed ID: 26108566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monte Carlo study of pathlength distribution of polarized light in turbid media.
    Guo X; Wood MF; Vitkin A
    Opt Express; 2007 Feb; 15(3):1348-60. PubMed ID: 19532365
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media.
    Naglič P; Pernuš F; Likar B; Bürmen M
    Biomed Opt Express; 2017 Mar; 8(3):1895-1910. PubMed ID: 28663872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media.
    Yao G; Wang LV
    Phys Med Biol; 1999 Sep; 44(9):2307-20. PubMed ID: 10495123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radiative transport produced by oblique illumination of turbid media with collimated beams.
    Gardner AR; Kim AD; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063308. PubMed ID: 23848807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium.
    Bruscaglioni P; Donelli P; Ismaelli A; Zaccanti G
    Appl Opt; 1993 May; 32(15):2813-24. PubMed ID: 20820446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two electric field Monte Carlo models of coherent backscattering of polarized light.
    Doronin A; Radosevich AJ; Backman V; Meglinski I
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling nonlinear optical microscopy in scattering media, part I. Propagation from lens to focal volume: tutorial.
    Ranasinghesagara JC; Potma EO; Venugopalan V
    J Opt Soc Am A Opt Image Sci Vis; 2023 May; 40(5):867-882. PubMed ID: 37133184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Method to determine the optical properties of turbid media.
    Prerana ; Shenoy MR; Pal BP
    Appl Opt; 2008 Jun; 47(17):3216-20. PubMed ID: 18545296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams.
    Moh KJ; Yuan XC; Bu J; Burge RE; Gao BZ
    Appl Opt; 2007 Oct; 46(30):7544-51. PubMed ID: 17952194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.