These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21339946)

  • 1. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.
    Sepcic K; Zalar P; Gunde-Cimerman N
    Mar Drugs; 2010 Dec; 9(1):43-58. PubMed ID: 21339946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mycobiota of the salterns.
    Zajc J; Zalar P; Plemenitaš A; Gunde-Cimerman N
    Prog Mol Subcell Biol; 2012; 53():133-58. PubMed ID: 22222830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungi in salterns.
    Chung D; Kim H; Choi HS
    J Microbiol; 2019 Sep; 57(9):717-724. PubMed ID: 31452042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal adaptation to extremely high salt concentrations.
    Gostinčar C; Lenassi M; Gunde-Cimerman N; Plemenitaš A
    Adv Appl Microbiol; 2011; 77():71-96. PubMed ID: 22050822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halotolerant and halophilic fungi.
    Gunde-Cimerman N; Ramos J; Plemenitas A
    Mycol Res; 2009 Nov; 113(Pt 11):1231-41. PubMed ID: 19747974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments.
    Kogej T; Ramos J; Plemenitas A; Gunde-Cimerman N
    Appl Environ Microbiol; 2005 Nov; 71(11):6600-5. PubMed ID: 16269687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance.
    Turk M; Plemenitaš A; Gunde-Cimerman N
    Fungal Biol; 2011 Oct; 115(10):950-8. PubMed ID: 21944207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia.
    Conde-Martínez N; Acosta-González A; Díaz LE; Tello E
    BMC Microbiol; 2017 Dec; 17(1):230. PubMed ID: 29216824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremotolerance in fungi: evolution on the edge.
    Gostincar C; Grube M; de Hoog S; Zalar P; Gunde-Cimerman N
    FEMS Microbiol Ecol; 2010 Jan; 71(1):2-11. PubMed ID: 19878320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative GC-MS analysis of bioactive secondary metabolites produced by halotolerant Bacillus spp. isolated from the Great Sebkha of Oran.
    Nas F; Aissaoui N; Mahjoubi M; Mosbah A; Arab M; Abdelwahed S; Khrouf R; Masmoudi AS; Cherif A; Klouche-Khelil N
    Int Microbiol; 2021 Aug; 24(3):455-470. PubMed ID: 34100180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi.
    Turk M; Abramović Z; Plemenitas A; Gunde-Cimerman N
    FEMS Yeast Res; 2007 Jun; 7(4):550-7. PubMed ID: 17298474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual fungal niches.
    Cantrell SA; Dianese JC; Fell J; Gunde-Cimerman N; Zalar P
    Mycologia; 2011; 103(6):1161-74. PubMed ID: 21700639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of halophilic and halotolerant fungi from man-made solar salterns in Pattani Province, Thailand.
    Wingfield LK; Jitprasitporn N; Che-Alee N
    PLoS One; 2023; 18(2):e0281623. PubMed ID: 36780513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits of life in MgCl2-containing environments: chaotropicity defines the window.
    Hallsworth JE; Yakimov MM; Golyshin PN; Gillion JL; D'Auria G; de Lima Alves F; La Cono V; Genovese M; McKew BA; Hayes SL; Harris G; Giuliano L; Timmis KN; McGenity TJ
    Environ Microbiol; 2007 Mar; 9(3):801-13. PubMed ID: 17298378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri.
    Vieira G; Purić J; Morão LG; Dos Santos JA; Inforsato FJ; Sette LD; Ferreira H; Sass DC
    Lett Appl Microbiol; 2018 Jul; 67(1):64-71. PubMed ID: 29604211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions.
    Jančič S; Frisvad JC; Kocev D; Gostinčar C; Džeroski S; Gunde-Cimerman N
    PLoS One; 2016; 11(12):e0169116. PubMed ID: 28036382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans.
    Wang Y; Lu Z; Sun K; Zhu W
    Mar Drugs; 2011; 9(4):535-542. PubMed ID: 21731548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Potential of Halophilic Filamentous Fungi-Current Perspective.
    Śliżewska W; Struszczyk-Świta K; Marchut-Mikołajczyk O
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions.
    Ding X; Liu K; Lu Y; Gong G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3829-3846. PubMed ID: 30859256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial activity of marine-derived fungi.
    Christophersen C; Crescente O; Frisvad JC; Gram L; Nielsen J; Nielsen PH; Rahbaek L
    Mycopathologia; 1998-1999; 143(3):135-8. PubMed ID: 10409050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.