These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 21340461)
1. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays. Norris CE; Preston CM; Hogg KE; Titus BD J Chem Ecol; 2011 Mar; 37(3):311-9. PubMed ID: 21340461 [TBL] [Abstract][Full Text] [Related]
2. ¹H-¹³C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans-flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis. Zeller WE; Ramsay A; Ropiak HM; Fryganas C; Mueller-Harvey I; Brown RH; Drake C; Grabber JH J Agric Food Chem; 2015 Feb; 63(7):1967-73. PubMed ID: 25629428 [TBL] [Abstract][Full Text] [Related]
3. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. Kraus TE; Yu Z; Preston CM; Dahlgren RA; Zasoski RJ J Chem Ecol; 2003 Mar; 29(3):703-30. PubMed ID: 12757329 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils. Talbot JM; Finzi AC Oecologia; 2008 Mar; 155(3):583-92. PubMed ID: 18210159 [TBL] [Abstract][Full Text] [Related]
5. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance. Lorenz K; Preston CM J Environ Qual; 2002; 31(2):431-6. PubMed ID: 11931430 [TBL] [Abstract][Full Text] [Related]
6. Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana). Joanisse GD; Bradley RL; Preston CM; Bending GD New Phytol; 2009; 181(1):187-198. PubMed ID: 18811620 [TBL] [Abstract][Full Text] [Related]
7. MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Behrens A; Maie N; Knicker H; Kögel-Knabner I Phytochemistry; 2003 Apr; 62(7):1159-70. PubMed ID: 12591272 [TBL] [Abstract][Full Text] [Related]
8. Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Baptist F; Zinger L; Clement JC; Gallet C; Guillemin R; Martins JM; Sage L; Shahnavaz B; Choler P; Geremia R Environ Microbiol; 2008 Mar; 10(3):799-809. PubMed ID: 18237312 [TBL] [Abstract][Full Text] [Related]
9. In situ analysis and structural elucidation of sainfoin (Onobrychis viciifolia) tannins for high-throughput germplasm screening. Gea A; Stringano E; Brown RH; Mueller-Harvey I J Agric Food Chem; 2011 Jan; 59(2):495-503. PubMed ID: 21175139 [TBL] [Abstract][Full Text] [Related]
10. Direct versus Sequential Analysis of Procyanidin- and Prodelphinidin-Based Condensed Tannins by the HCl-Butanol-Acetone-Iron Assay. Grabber JH; Zeller WE J Agric Food Chem; 2020 Mar; 68(10):2906-2916. PubMed ID: 31267749 [TBL] [Abstract][Full Text] [Related]
11. Identification of Structural Features of Condensed Tannins That Affect Protein Aggregation. Ropiak HM; Lachmann P; Ramsay A; Green RJ; Mueller-Harvey I PLoS One; 2017; 12(1):e0170768. PubMed ID: 28125657 [TBL] [Abstract][Full Text] [Related]
12. Relationships between Structures of Condensed Tannins from Texas Legumes and Methane Production During In Vitro Rumen Digestion. Naumann H; Sepela R; Rezaire A; Masih SE; Zeller WE; Reinhardt LA; Robe JT; Sullivan ML; Hagerman AE Molecules; 2018 Aug; 23(9):. PubMed ID: 30142930 [TBL] [Abstract][Full Text] [Related]
13. An improved butanol-HCl assay for quantification of water-soluble, acetone:methanol-soluble, and insoluble proanthocyanidins (condensed tannins). Shay PE; Trofymow JA; Constabel CP Plant Methods; 2017; 13():63. PubMed ID: 28775761 [TBL] [Abstract][Full Text] [Related]
14. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history. Triebwasser DJ; Tharayil N; Preston CM; Gerard PD New Phytol; 2012 Dec; 196(4):1122-1132. PubMed ID: 23025512 [TBL] [Abstract][Full Text] [Related]
15. Acetone enhances the direct analysis of procyanidin- and prodelphinidin-based condensed tannins in lotus species by the butanol-HCl-iron assay. Grabber JH; Zeller WE; Mueller-Harvey I J Agric Food Chem; 2013 Mar; 61(11):2669-78. PubMed ID: 23383722 [TBL] [Abstract][Full Text] [Related]
16. Analysis of commercial proanthocyanidins. Part 4: solid state (13)C NMR as a tool for in situ analysis of proanthocyanidin tannins, in heartwood and bark of quebracho and acacia, and related species. Reid DG; Bonnet SL; Kemp G; van der Westhuizen JH Phytochemistry; 2013 Oct; 94():243-8. PubMed ID: 23838626 [TBL] [Abstract][Full Text] [Related]
17. Carbon-13 Cross-Polarization Magic-Angle Spinning Nuclear Magnetic Resonance for Measuring Proanthocyanidin Content and Procyanidin to Prodelphinidin Ratio in Sainfoin ( Onobrychis viciifolia) Tissues. Fryganas C; Drake C; Ropiak HM; Mora-Ortiz M; Smith LMJ; Mueller-Harvey I; Kowalczyk RM J Agric Food Chem; 2018 Apr; 66(16):4073-4081. PubMed ID: 29631396 [TBL] [Abstract][Full Text] [Related]
18. Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand. Kaal J; Nierop KG; Verstraten JM J Colloid Interface Sci; 2005 Jul; 287(1):72-9. PubMed ID: 15914150 [TBL] [Abstract][Full Text] [Related]
19. A 3D structural and conformational study of procyanidin dimers in water and hydro-alcoholic media as viewed by NMR and molecular modeling. Tarascou I; Barathieu K; Simon C; Ducasse MA; André Y; Fouquet E; Dufourc EJ; de Freitas V; Laguerre M; Pianet I Magn Reson Chem; 2006 Sep; 44(9):868-80. PubMed ID: 16791908 [TBL] [Abstract][Full Text] [Related]
20. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds. Melone F; Saladino R; Lange H; Crestini C J Agric Food Chem; 2013 Oct; 61(39):9307-15. PubMed ID: 24059814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]