BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1475 related articles for article (PubMed ID: 2134049)

  • 1. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of the pseudo-EF hand in calbindin D9K: effect of amino acid substitutions in the alpha-helical regions.
    Tsuji T; Kaiser ET
    Proteins; 1991; 9(1):12-22. PubMed ID: 2017432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic alpha-helix.
    Monera OD; Sereda TJ; Zhou NE; Kay CM; Hodges RS
    J Pept Sci; 1995; 1(5):319-29. PubMed ID: 9223011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices.
    Houston ME; Campbell AP; Lix B; Kay CM; Sykes BD; Hodges RS
    Biochemistry; 1996 Aug; 35(31):10041-50. PubMed ID: 8756466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues.
    Shah NK; Ramshaw JA; Kirkpatrick A; Shah C; Brodsky B
    Biochemistry; 1996 Aug; 35(32):10262-8. PubMed ID: 8756681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactam bridge stabilization of alpha-helical peptides: ring size, orientation and positional effects.
    Houston ME; Gannon CL; Kay CM; Hodges RS
    J Pept Sci; 1995; 1(4):274-82. PubMed ID: 9223005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein design using model synthetic peptides.
    Hodges RS; Semchuk PD; Taneja AK; Kay CM; Parker JM; Mant CT
    Pept Res; 1988; 1(1):19-30. PubMed ID: 2980779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability.
    Hodges RS; Zhou NE; Kay CM; Semchuk PD
    Pept Res; 1990; 3(3):123-37. PubMed ID: 2134057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes.
    Mishra VK; Palgunachari MN
    Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of end group blockage on the properties of a class A amphipathic helical peptide.
    Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM
    Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Design and synthesis of peptides capable of specific binding to DNA].
    Grokhovskiĭ SL; Surovaia AN; Sidorova NIu; Votavova H; Sponar J
    Mol Biol (Mosk); 1988; 22(5):1315-34. PubMed ID: 2851717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of peptide conformations induced in anisotropic environments.
    Büttner K; Blondelle SE; Ostresh JM; Houghten RA
    Biopolymers; 1992 Jun; 32(6):575-83. PubMed ID: 1643263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage isomerism in the binding of pentapeptide Ac-His(Ala)3His-NH2 to (ethylenediamine)palladium(II): effect of the binding mode on peptide conformation.
    Hoang HN; Bryant GK; Kelso MJ; Beyer RL; Appleton TG; Fairlie DP
    Inorg Chem; 2008 Oct; 47(20):9439-49. PubMed ID: 18788796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversed-phase chromatography of synthetic amphipathic alpha-helical peptides as a model for ligand/receptor interactions. Effect of changing hydrophobic environment on the relative hydrophilicity/hydrophobicity of amino acid side-chains.
    Sereda TJ; Mant CT; Sönnichsen FD; Hodges RS
    J Chromatogr A; 1994 Jul; 676(1):139-53. PubMed ID: 7921171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation and interactions of bombolitin I analogues with SDS micelles and phospholipid vesicles: CD, fluorescence, two-dimensional NMR and computer simulations.
    Chorev M; Gurrath M; Behar V; Mammi S; Tonello A; Peggion E
    Biopolymers; 1995 Oct; 36(4):473-84. PubMed ID: 7578942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.