These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Crucial role of c-Myc in the generation of induced pluripotent stem cells. Araki R; Hoki Y; Uda M; Nakamura M; Jincho Y; Tamura C; Sunayama M; Ando S; Sugiura M; Yoshida MA; Kasama Y; Abe M Stem Cells; 2011 Sep; 29(9):1362-70. PubMed ID: 21732496 [TBL] [Abstract][Full Text] [Related]
45. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Chen GY; Pang DW; Hwang SM; Tuan HY; Hu YC Biomaterials; 2012 Jan; 33(2):418-27. PubMed ID: 22014460 [TBL] [Abstract][Full Text] [Related]
46. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Sampaolesi M; Torrente Y; Innocenzi A; Tonlorenzi R; D'Antona G; Pellegrino MA; Barresi R; Bresolin N; De Angelis MG; Campbell KP; Bottinelli R; Cossu G Science; 2003 Jul; 301(5632):487-92. PubMed ID: 12855815 [TBL] [Abstract][Full Text] [Related]
47. Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Zhao M; Tazumi A; Takayama S; Takenaka-Ninagawa N; Nalbandian M; Nagai M; Nakamura Y; Nakasa M; Watanabe A; Ikeya M; Hotta A; Ito Y; Sato T; Sakurai H Stem Cell Reports; 2020 Jul; 15(1):80-94. PubMed ID: 32619494 [TBL] [Abstract][Full Text] [Related]
48. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Dellavalle A; Sampaolesi M; Tonlorenzi R; Tagliafico E; Sacchetti B; Perani L; Innocenzi A; Galvez BG; Messina G; Morosetti R; Li S; Belicchi M; Peretti G; Chamberlain JS; Wright WE; Torrente Y; Ferrari S; Bianco P; Cossu G Nat Cell Biol; 2007 Mar; 9(3):255-67. PubMed ID: 17293855 [TBL] [Abstract][Full Text] [Related]
49. Memory or amnesia: the dilemma of stem cell therapy in muscular dystrophies. Sandri M J Clin Invest; 2015 Dec; 125(12):4331-3. PubMed ID: 26571391 [TBL] [Abstract][Full Text] [Related]
50. In vitro expanded skeletal myogenic progenitors from pluripotent stem cell-derived teratomas have high engraftment capacity. Xie N; Chu SN; Azzag K; Schultz CB; Peifer LN; Kyba M; Perlingeiro RCR; Chan SSK Stem Cell Reports; 2021 Dec; 16(12):2900-2912. PubMed ID: 34798067 [TBL] [Abstract][Full Text] [Related]
51. Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. Sato T J Neuromuscul Dis; 2020; 7(4):395-405. PubMed ID: 32538862 [TBL] [Abstract][Full Text] [Related]
52. The role of CD34 expression and cellular fusion in the regeneration capacity of myogenic progenitor cells. Jankowski RJ; Deasy BM; Cao B; Gates C; Huard J J Cell Sci; 2002 Nov; 115(Pt 22):4361-74. PubMed ID: 12376567 [TBL] [Abstract][Full Text] [Related]
53. iPSC technology: platform for drug discovery. Point. Ellis J; Bhatia M Clin Pharmacol Ther; 2011 May; 89(5):639-41. PubMed ID: 21512521 [TBL] [Abstract][Full Text] [Related]
54. Role of Jnk1 in development of neural precursors revealed by iPSC modeling. Zhang Q; Mao J; Zhang X; Fu H; Xia S; Yin Z; Liu L Oncotarget; 2016 Sep; 7(38):60919-60928. PubMed ID: 27556303 [TBL] [Abstract][Full Text] [Related]
58. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. Salani S; Donadoni C; Rizzo F; Bresolin N; Comi GP; Corti S J Cell Mol Med; 2012 Jul; 16(7):1353-64. PubMed ID: 22129481 [TBL] [Abstract][Full Text] [Related]
59. [Lineage-switching by pluripotent cells derived from adults]. Dieterlen-Lièvre F J Soc Biol; 2001; 195(1):39-46. PubMed ID: 11530498 [TBL] [Abstract][Full Text] [Related]
60. Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Chien Y; Liao YW; Liu DM; Lin HL; Chen SJ; Chen HL; Peng CH; Liang CM; Mou CY; Chiou SH Biomaterials; 2012 Nov; 33(32):8003-16. PubMed ID: 22858046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]