These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21341285)

  • 1. Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays.
    Li ZR; Liu GR; Hadjiconstantinou NG; Han J; Wang JS; Chen YZ
    Electrophoresis; 2011 Feb; 32(5):506-17. PubMed ID: 21341285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of biomolecules in asymmetric nanofilter arrays.
    Li ZR; Liu GR; Han J; Chen YZ; Wang JS; Hadjiconstantinou NG
    Anal Bioanal Chem; 2009 May; 394(2):427-35. PubMed ID: 19127359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores.
    Li ZR; Liu GR; Han J; Cheng Y; Chen YZ; Wang JS; Hadjiconstantinou NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041911. PubMed ID: 19905346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules.
    Li ZR; Liu GR; Chen YZ; Wang JS; Bow H; Cheng Y; Han J
    Electrophoresis; 2008 Jan; 29(2):329-39. PubMed ID: 18203240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays.
    Fu J; Yoo J; Han J
    Phys Rev Lett; 2006 Jul; 97(1):018103. PubMed ID: 16907412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins.
    Fu J; Schoch RB; Stevens AL; Tannenbaum SR; Han J
    Nat Nanotechnol; 2007 Feb; 2(2):121-8. PubMed ID: 18654231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic ratcheting of spherical particles in well/channel microfluidic devices: Making particles move against the net field.
    Wang H; de Haan HW; Slater GW
    Electrophoresis; 2020 Apr; 41(7-8):621-629. PubMed ID: 31845347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
    Chen Z; Dorfman KD
    Electrophoresis; 2014 Feb; 35(2-3):405-11. PubMed ID: 23868490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-flow bioseparation using microfabricated anisotropic nanofluidic sieving structures.
    Fu J; Mao P; Han J
    Nat Protoc; 2009; 4(11):1681-98. PubMed ID: 19876028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic size separation of particles in a periodically constricted microchannel.
    Cheng KL; Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2008 Mar; 128(10):101101. PubMed ID: 18345869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput DNA separation in nanofilter arrays.
    Choi S; Kim JM; Ahn KH; Lee SJ
    Electrophoresis; 2014 Aug; 35(15):2068-77. PubMed ID: 24930709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive model of electromigrative transport in microfluidic paper based analytical devices.
    Schaumburg F; Kler PA; Berli CLA
    Electrophoresis; 2020 Apr; 41(7-8):598-606. PubMed ID: 31904869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters.
    Bow H; Fu J; Han J
    Electrophoresis; 2008 Dec; 29(23):4646-51. PubMed ID: 19016242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traveling-wave electrophoresis for microfluidic separations.
    Edwards BF; Timperman AT; Carroll RL; Jo K; Mease JM; Schiffbauer JE
    Phys Rev Lett; 2009 Feb; 102(7):076103. PubMed ID: 19257694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter.
    Lewpiriyawong N; Yang C
    Electrophoresis; 2014 Mar; 35(5):714-20. PubMed ID: 24338796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressable electric fields for size-fractioned sample extraction in microfluidic devices.
    Lin R; Burke DT; Burns MA
    Anal Chem; 2005 Jul; 77(14):4338-47. PubMed ID: 16013844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the separation of macromolecules: a review of current computer simulation methods.
    Slater GW; Holm C; Chubynsky MV; de Haan HW; Dubé A; Grass K; Hickey OA; Kingsburry C; Sean D; Shendruk TN; Zhan L
    Electrophoresis; 2009 Mar; 30(5):792-818. PubMed ID: 19260004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of disorder on DNA electrophoresis in a microfluidic array of obstacles.
    Mohan A; Doyle PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040903. PubMed ID: 17994929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-state migration of DNA in a structured microchannel.
    Streek M; Schmid F; Duong TT; Anselmetti D; Ros A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011905. PubMed ID: 15697628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.