These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 21341286)

  • 1. Electric field-induced self-assembly of micro- and nanoparticles of various shapes at two-fluid interfaces.
    Janjua M; Nudurupati S; Singh P; Aubry N
    Electrophoresis; 2011 Feb; 32(5):518-26. PubMed ID: 21341286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics underlying controlled self-assembly of micro- and nanoparticles at a two-fluid interface using an electric field.
    Aubry N; Singh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056302. PubMed ID: 18643156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destabilization of Pickering emulsions using external electric fields.
    Hwang K; Singh P; Aubry N
    Electrophoresis; 2010 Mar; 31(5):850-9. PubMed ID: 20191547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields.
    Gangwal S; Cayre OJ; Velev OD
    Langmuir; 2008 Dec; 24(23):13312-20. PubMed ID: 18973307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodipping force acting on solid particles at a fluid interface.
    Danov KD; Kralchevsky PA; Boneva MP
    Langmuir; 2004 Jul; 20(15):6139-51. PubMed ID: 15248696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electric-field-induced capillary attraction on the motion of particles at an oil-water interface.
    Boneva MP; Christov NC; Danov KD; Kralchevsky PA
    Phys Chem Chem Phys; 2007 Dec; 9(48):6371-84. PubMed ID: 18060167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces.
    Nikolaides MG; Bausch AR; Hsu MF; Dinsmore AD; Brenner MP; Gay C; Weitz DA
    Nature; 2002 Nov; 420(6913):299-301. PubMed ID: 12447435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial assembly of turnip yellow mosaic virus nanoparticles.
    Kaur G; He J; Xu J; Pingali S; Jutz G; Böker A; Niu Z; Li T; Rawlinson D; Emrick T; Lee B; Thiyagarajan P; Russell TP; Wang Q
    Langmuir; 2009 May; 25(9):5168-76. PubMed ID: 19354217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and deformation of droplets in a microdevice using dielectrophoresis.
    Singh P; Aubry N
    Electrophoresis; 2007 Feb; 28(4):644-57. PubMed ID: 17304498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of dielectrophoretic particle-particle interactions and assembly.
    Hossan MR; Dillon R; Roy AK; Dutta P
    J Colloid Interface Sci; 2013 Mar; 394():619-29. PubMed ID: 23348000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle assembly at fluid interfaces: structure and dynamics.
    Lin Y; Böker A; Skaff H; Cookson D; Dinsmore AD; Emrick T; Russell TP
    Langmuir; 2005 Jan; 21(1):191-4. PubMed ID: 15620302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of nanoparticles uptaken by cells on electrorotation.
    Chuang CH; Hsu YM; Yeh CC
    Electrophoresis; 2009 May; 30(9):1449-56. PubMed ID: 19350546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle lithography from colloidal self-assembly at liquid-liquid interfaces.
    Isa L; Kumar K; Müller M; Grolig J; Textor M; Reimhult E
    ACS Nano; 2010 Oct; 4(10):5665-70. PubMed ID: 20931974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study on dielectrophoretic chaining of two ellipsoidal particles.
    House DL; Luo H; Chang S
    J Colloid Interface Sci; 2012 May; 374(1):141-9. PubMed ID: 22340950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces acting on dielectric colloidal spheres at a water/nonpolar-fluid interface in an external electric field. 1. Uncharged particles.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2013 Sep; 405():278-90. PubMed ID: 23768629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of nanocolloidal particles gamma-Fe2O3 at the charged interfaces. Part 1. The approach of particles to an electrode.
    Lucas IT; Dubois E; Chevalet J; Durand-Vidal S
    Phys Chem Chem Phys; 2008 Jun; 10(22):3263-73. PubMed ID: 18500404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite interfacial layers containing micro-size and nano-size particles.
    Miller R; Fainerman VB; Kovalchuk VI; Grigoriev DO; Leser ME; Michel M
    Adv Colloid Interface Sci; 2006 Dec; 128-130():17-26. PubMed ID: 17196540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force balance of particles trapped at fluid interfaces.
    Domínguez A; Oettel M; Dietrich S
    J Chem Phys; 2008 Mar; 128(11):114904. PubMed ID: 18361615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.