BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21341321)

  • 1. The stability of Cα peptide radicals: why glycyl radical enzymes?
    Hioe J; Savasci G; Brand H; Zipse H
    Chemistry; 2011 Mar; 17(13):3781-9. PubMed ID: 21341321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide cation-radicals. A computational study of the competition between peptide N-Calpha bond cleavage and loss of the side chain in the [GlyPhe-NH2 + 2H]+. cation-radical.
    Turecek F; Syrstad EA; Seymour JL; Chen X; Yao C
    J Mass Spectrom; 2003 Oct; 38(10):1093-104. PubMed ID: 14595859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bond dissociation energies and radical stabilization energies associated with model peptide-backbone radicals.
    Wood GP; Moran D; Jacob R; Radom L
    J Phys Chem A; 2005 Jul; 109(28):6318-25. PubMed ID: 16833974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation dependence of the DαDα stretch mode in peptides: Side-chain influence in dipeptide structures.
    Mirkin NG; Krimm S
    Biopolymers; 2010 Dec; 93(12):1065-71. PubMed ID: 20665478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: glycyl radical as a case study.
    Ciofini I; Adamo C; Barone V
    J Chem Phys; 2004 Oct; 121(14):6710-8. PubMed ID: 15473726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible hydrogen transfer between cysteine thiyl radical and glycine and alanine in model peptides: covalent H/D exchange, radical-radical reactions, and L- to D-Ala conversion.
    Mozziconacci O; Kerwin BA; Schöneich C
    J Phys Chem B; 2010 May; 114(19):6751-62. PubMed ID: 20415493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mass spectrometric approach for probing the stability of bioorganic radicals.
    Tan L; Hu H; Francisco JS; Xia Y
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1887-90. PubMed ID: 24446129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoroolefins as peptide mimetics. 2. A computational study of the conformational ramifications of peptide bond replacement.
    McKinney BE; Urban JJ
    J Phys Chem A; 2010 Jan; 114(2):1123-33. PubMed ID: 20000722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new scheme for determining the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of glycine and alanine peptides.
    Wang CS; Zhang Y; Gao K; Yang ZZ
    J Chem Phys; 2005 Jul; 123(2):24307. PubMed ID: 16050745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the electon paramagnetic resonance parameters of protein-bound glycyl radicals.
    Kacprzak S; Reviakine R; Kaupp M
    J Phys Chem B; 2007 Feb; 111(4):820-31. PubMed ID: 17249826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of a Dcp-containing peptide.
    De Simone G; Lombardi A; Galdiero S; Nastri F; Di Costanzo L; Gohda S; Sano A; Yamada T; Pavone V
    Biopolymers; 2000 Feb; 53(2):182-8. PubMed ID: 10679622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic Effects on the Stability of Peptide Radicals.
    Jangra H; Zipse H
    J Phys Chem B; 2018 Sep; 122(38):8880-8890. PubMed ID: 30199247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of radical-resistant amino acid residues: a combined theoretical and experimental investigation.
    Croft AK; Easton CJ; Radom L
    J Am Chem Soc; 2003 Apr; 125(14):4119-24. PubMed ID: 12670233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis.
    Yamazaki T; Nunami K; Goodman M
    Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of peptidylglycine alpha-amidating monooxygenase by exploitation of factors affecting the stability and ease of formation of glycyl radicals.
    Barratt BJ; Easton CJ; Henry DJ; Li IH; Radom L; Simpson JS
    J Am Chem Soc; 2004 Oct; 126(41):13306-11. PubMed ID: 15479085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of side radicals on the peptide structure. Surface of potential energy of model alanine and phenylalanine dipeptides].
    Basharov MA; Vol'kenshteĭn MV; Golovanov IB
    Mol Biol (Mosk); 1988; 22(5):1217-25. PubMed ID: 3221850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory.
    Perczel A; Farkas O; Jákli I; Topol IA; Csizmadia IG
    J Comput Chem; 2003 Jul; 24(9):1026-42. PubMed ID: 12759903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature study of a glycine radical in the solid state adopting a DFT periodic approach: vibrational analysis and comparison with EPR experiments.
    Pauwels E; Verstraelen T; De Cooman H; Van Speybroeck V; Waroquier M
    J Phys Chem B; 2008 Jun; 112(25):7618-30. PubMed ID: 18512888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.