These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21341651)

  • 1. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway.
    Hove-Jensen B; McSorley FR; Zechel DL
    J Am Chem Soc; 2011 Mar; 133(10):3617-24. PubMed ID: 21341651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway.
    He SM; Wathier M; Podzelinska K; Wong M; McSorley FR; Asfaw A; Hove-Jensen B; Jia Z; Zechel DL
    Biochemistry; 2011 Oct; 50(40):8603-15. PubMed ID: 21830807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.
    Podzelinska K; He SM; Wathier M; Yakunin A; Proudfoot M; Hove-Jensen B; Zechel DL; Jia Z
    J Biol Chem; 2009 Jun; 284(25):17216-17226. PubMed ID: 19366688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescent substrate for carbon-phosphorus lyase: towards the pathway for organophosphonate metabolism in bacteria.
    He SM; Luo Y; Hove-Jensen B; Zechel DL
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5954-7. PubMed ID: 19733071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product.
    Hove-Jensen B; McSorley FR; Zechel DL
    PLoS One; 2012; 7(10):e46416. PubMed ID: 23056305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes for phosphonate biodegradation in Escherichia coli.
    Wanner BL
    SAAS Bull Biochem Biotechnol; 1992 Jan; 5():1-6. PubMed ID: 1368181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli.
    Hove-Jensen B; Rosenkrantz TJ; Zechel DL; Willemoës M
    J Bacteriol; 2010 Jan; 192(1):370-4. PubMed ID: 19854894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways.
    Hove-Jensen B; Rosenkrantz TJ; Haldimann A; Wanner BL
    J Bacteriol; 2003 May; 185(9):2793-801. PubMed ID: 12700258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
    Yakovleva GM; Kim SK; Wanner BL
    Appl Microbiol Biotechnol; 1998 May; 49(5):573-8. PubMed ID: 9650256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unusual diphosphatase from the PhnP family cleaves reactive FAD photoproducts.
    Beaudoin GAW; Li Q; Bruner SD; Hanson AD
    Biochem J; 2018 Jan; 475(1):261-272. PubMed ID: 29229761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
    Wanner BL; Metcalf WW
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):133-9. PubMed ID: 1335942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of PhnH: an essential component of carbon-phosphorus lyase in Escherichia coli.
    Adams MA; Luo Y; Hove-Jensen B; He SM; van Staalduinen LM; Zechel DL; Jia Z
    J Bacteriol; 2008 Feb; 190(3):1072-83. PubMed ID: 17993513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12.
    Wackett LP; Wanner BL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Apr; 169(4):1753-6. PubMed ID: 3549702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a cyclic phosphodiesterase that catalyzes the sequential hydrolysis of both ester bonds to phosphorus.
    Ghodge SV; Cummings JA; Williams HJ; Raushel FM
    J Am Chem Soc; 2013 Nov; 135(44):16360-3. PubMed ID: 24147537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B.
    Chen CM; Ye QZ; Zhu ZM; Wanner BL; Walsh CT
    J Biol Chem; 1990 Mar; 265(8):4461-71. PubMed ID: 2155230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control.
    Tuckerman JR; Gonzalez G; Sousa EH; Wan X; Saito JA; Alam M; Gilles-Gonzalez MA
    Biochemistry; 2009 Oct; 48(41):9764-74. PubMed ID: 19764732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source.
    McLoughlin SY; Jackson C; Liu JW; Ollis DL
    Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.