These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 21341770)

  • 1. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers.
    Lee OS; Stupp SI; Schatz GC
    J Am Chem Soc; 2011 Mar; 133(10):3677-83. PubMed ID: 21341770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-specific nanofibers via self-assembly of three-branched peptide.
    Koga T; Matsui H; Matsumoto T; Higashi N
    J Colloid Interface Sci; 2011 Jun; 358(1):81-5. PubMed ID: 21429499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers.
    Yu T; Lee OS; Schatz GC
    J Phys Chem A; 2013 Aug; 117(32):7453-60. PubMed ID: 23510255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays.
    Yu T; Lee OS; Schatz GC
    J Phys Chem A; 2014 Sep; 118(37):8553-62. PubMed ID: 24735017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles.
    Toksoz S; Mammadov R; Tekinay AB; Guler MO
    J Colloid Interface Sci; 2011 Apr; 356(1):131-7. PubMed ID: 21269637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails.
    Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly.
    Iscen A; Schatz GC
    J Phys Chem B; 2019 Aug; 123(32):7006-7013. PubMed ID: 31337221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks.
    Jun HW; Paramonov SE; Dong H; Forraz N; McGuckin C; Hartgerink JD
    J Biomater Sci Polym Ed; 2008; 19(5):665-76. PubMed ID: 18419944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties.
    Miyachi A; Takahashi T; Matsumura S; Mihara H
    Chemistry; 2010 Jun; 16(22):6644-50. PubMed ID: 20419712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dip-pen patterning and surface assembly of peptide amphiphiles.
    Jiang H; Stupp SI
    Langmuir; 2005 Jun; 21(12):5242-6. PubMed ID: 15924443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulation study of peptide amphiphile self-assembly.
    Velichko YS; Stupp SI; de la Cruz MO
    J Phys Chem B; 2008 Feb; 112(8):2326-34. PubMed ID: 18251531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles.
    Fu IW; Nguyen HD
    Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable mechanics of peptide nanofiber gels.
    Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI
    Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber.
    Luo J; Tong YW
    ACS Nano; 2011 Oct; 5(10):7739-47. PubMed ID: 21899363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.