These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers. Yu T; Lee OS; Schatz GC J Phys Chem A; 2013 Aug; 117(32):7453-60. PubMed ID: 23510255 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays. Yu T; Lee OS; Schatz GC J Phys Chem A; 2014 Sep; 118(37):8553-62. PubMed ID: 24735017 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. Paramonov SE; Jun HW; Hartgerink JD J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular Assembly of Peptide Amphiphiles. Hendricks MP; Sato K; Palmer LC; Stupp SI Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055 [TBL] [Abstract][Full Text] [Related]
9. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails. Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903 [TBL] [Abstract][Full Text] [Related]
10. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Chu BK; Nguyen HD Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376 [TBL] [Abstract][Full Text] [Related]
12. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks. Jun HW; Paramonov SE; Dong H; Forraz N; McGuckin C; Hartgerink JD J Biomater Sci Polym Ed; 2008; 19(5):665-76. PubMed ID: 18419944 [TBL] [Abstract][Full Text] [Related]
13. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties. Miyachi A; Takahashi T; Matsumura S; Mihara H Chemistry; 2010 Jun; 16(22):6644-50. PubMed ID: 20419712 [TBL] [Abstract][Full Text] [Related]
14. Dip-pen patterning and surface assembly of peptide amphiphiles. Jiang H; Stupp SI Langmuir; 2005 Jun; 21(12):5242-6. PubMed ID: 15924443 [TBL] [Abstract][Full Text] [Related]
15. Molecular simulation study of peptide amphiphile self-assembly. Velichko YS; Stupp SI; de la Cruz MO J Phys Chem B; 2008 Feb; 112(8):2326-34. PubMed ID: 18251531 [TBL] [Abstract][Full Text] [Related]
16. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034 [TBL] [Abstract][Full Text] [Related]
17. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles. Fu IW; Nguyen HD Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113 [TBL] [Abstract][Full Text] [Related]
18. Tunable mechanics of peptide nanofiber gels. Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454 [TBL] [Abstract][Full Text] [Related]
19. Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber. Luo J; Tong YW ACS Nano; 2011 Oct; 5(10):7739-47. PubMed ID: 21899363 [TBL] [Abstract][Full Text] [Related]