These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21341780)

  • 21. Modulating colloidal adsorption on a two-dimensional protein crystal.
    Shindel MM; Mohraz A; Mumm DR; Wang SW
    Langmuir; 2009 Jan; 25(2):1038-46. PubMed ID: 19099535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solutions.
    Zhao W; Lin L; Hsing IM
    Langmuir; 2010 May; 26(10):7405-9. PubMed ID: 20180584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the influence of solution chemistry on the adhesion of au nanoparticles to mica using colloid probe atomic force microscopy.
    Thio BJ; Lee JH; Meredith JC; Keller AA
    Langmuir; 2010 Sep; 26(17):13995-4003. PubMed ID: 20806965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation, size control, surface deposition, and catalytic reactivity of hydrophobic corrolazine nanoparticles in an aqueous environment.
    Cho K; Kerber WD; Lee SR; Wan A; Batteas JD; Goldberg DP
    Inorg Chem; 2010 Sep; 49(18):8465-73. PubMed ID: 20735145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells.
    Zhang W; Hughes J; Chen Y
    Appl Environ Microbiol; 2012 Jun; 78(11):3905-15. PubMed ID: 22467500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model.
    Phenrat T; Song JE; Cisneros CM; Schoenfelder DP; Tilton RD; Lowry GV
    Environ Sci Technol; 2010 Jun; 44(12):4531-8. PubMed ID: 20465214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suspension of Fe(3)O(4) nanoparticles stabilized by chitosan and o-carboxymethylchitosan.
    Zhu A; Yuan L; Liao T
    Int J Pharm; 2008 Feb; 350(1-2):361-8. PubMed ID: 17931808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of plutonium oxide nanoparticles.
    Schmidt M; Wilson RE; Lee SS; Soderholm L; Fenter P
    Langmuir; 2012 Feb; 28(5):2620-7. PubMed ID: 22216888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation.
    Zhang W; Zhang X
    Water Res; 2015 Feb; 69():59-67. PubMed ID: 25437338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles.
    Zhao X; Wang J; Wu F; Wang T; Cai Y; Shi Y; Jiang G
    J Hazard Mater; 2010 Jan; 173(1-3):102-9. PubMed ID: 19747775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles.
    Hamasaki T; Kashiwagi T; Imada T; Nakamichi N; Aramaki S; Toh K; Morisawa S; Shimakoshi H; Hisaeda Y; Shirahata S
    Langmuir; 2008 Jul; 24(14):7354-64. PubMed ID: 18553993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles.
    Gutierrez L; Li X; Wang J; Nangmenyi G; Economy J; Kuhlenschmidt TB; Kuhlenschmidt MS; Nguyen TH
    Water Res; 2009 Dec; 43(20):5198-208. PubMed ID: 19766286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts.
    Chen YH; Li FA
    J Colloid Interface Sci; 2010 Jul; 347(2):277-81. PubMed ID: 20430397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.