These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 21341798)
21. The effect of ring nitrogen atoms on the homolytic reactivity of phenolic compounds: understanding the radical-scavenging ability of 5-pyrimidinols. Valgimigli L; Brigati G; Pedulli GF; DiLabio GA; Mastragostino M; Arbizzani C; Pratt DA Chemistry; 2003 Oct; 9(20):4997-5010. PubMed ID: 14562318 [TBL] [Abstract][Full Text] [Related]
22. Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations. Baciocchi E; Del Giacco T; Lanzalunga O; Mencarelli P; Procacci B J Org Chem; 2008 Aug; 73(15):5675-82. PubMed ID: 18578497 [TBL] [Abstract][Full Text] [Related]
23. Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Roche M; Dufour C; Mora N; Dangles O Org Biomol Chem; 2005 Feb; 3(3):423-30. PubMed ID: 15678179 [TBL] [Abstract][Full Text] [Related]
24. LC-MS investigation of oxidation products of phenolic antioxidants. Antolovich M; Bedgood DR; Bishop AG; Jardine D; Prenzler PD; Robards K J Agric Food Chem; 2004 Feb; 52(4):962-71. PubMed ID: 14969558 [TBL] [Abstract][Full Text] [Related]
25. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604 [TBL] [Abstract][Full Text] [Related]
26. Antioxidant activity of o-bisphenols: the role of intramolecular hydrogen bonding. Amorati R; Lucarini M; Mugnaini V; Pedulli GF J Org Chem; 2003 Jun; 68(13):5198-204. PubMed ID: 12816477 [TBL] [Abstract][Full Text] [Related]
27. A density functional theory study of the mechanism of free radical generation in the system vanadate/PCA/H2O2. Khaliullin RZ; Bell AT; Head-Gordon M J Phys Chem B; 2005 Sep; 109(38):17984-92. PubMed ID: 16853308 [TBL] [Abstract][Full Text] [Related]
28. Chain mechanism in the photocleavage of phenacyl and pyridacyl esters in the presence of hydrogen donors. Literák J; Dostálová A; Klán P J Org Chem; 2006 Jan; 71(2):713-23. PubMed ID: 16408984 [TBL] [Abstract][Full Text] [Related]
29. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Kagan VE; Kuzmenko AI; Tyurina YY; Shvedova AA; Matsura T; Yalowich JC Cancer Res; 2001 Nov; 61(21):7777-84. PubMed ID: 11691792 [TBL] [Abstract][Full Text] [Related]
30. Dinuclear and mononuclear manganese(IV)-radical complexes and their catalytic catecholase activity. Mukherjee S; Weyhermüller T; Bothe E; Wieghardt K; Chaudhuri P Dalton Trans; 2004 Nov; (22):3842-53. PubMed ID: 15540128 [TBL] [Abstract][Full Text] [Related]
31. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
32. Antioxidant properties of phenols. Foti MC J Pharm Pharmacol; 2007 Dec; 59(12):1673-85. PubMed ID: 18053330 [TBL] [Abstract][Full Text] [Related]
33. Oxidation and chemiluminescence of catechol by hydrogen peroxide in the presence of Co(II) ions and CTAB micelles. Lasovsky J; Hrbac J; Sichertova D; Bednar P Luminescence; 2007; 22(5):501-6. PubMed ID: 17768713 [TBL] [Abstract][Full Text] [Related]
34. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism. Lu Y; Qu F; Moore B; Endicott D; Kuester W J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993 [TBL] [Abstract][Full Text] [Related]
35. 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran: design and evaluation as a novel radical-scavenging antioxidant against lipid peroxidation. Noguchi N; Iwaki Y; Takahashi M; Komuro E; Kato Y; Tamura K; Cynshi O; Kodama T; Niki E Arch Biochem Biophys; 1997 Jun; 342(2):236-43. PubMed ID: 9186484 [TBL] [Abstract][Full Text] [Related]
36. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines. Yuan H; Yoo WJ; Miyamura H; Kobayashi S J Am Chem Soc; 2012 Aug; 134(34):13970-3. PubMed ID: 22852772 [TBL] [Abstract][Full Text] [Related]
38. Kinetic study of the aroxyl radical-scavenging reaction of alpha-tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates. Ouchi A; Nagaoka S; Abe K; Mukai K J Phys Chem B; 2009 Oct; 113(40):13322-31. PubMed ID: 19754085 [TBL] [Abstract][Full Text] [Related]
39. The role of tocopherols in biomembrane lipid peroxidation. Burlakova EB; Krashakov SA; Khrapova NG Membr Cell Biol; 1998; 12(2):173-211. PubMed ID: 9879543 [TBL] [Abstract][Full Text] [Related]
40. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Apak R; Güçlü K; Ozyürek M; Bektas Oğlu B; Bener M Methods Mol Biol; 2008; 477():163-93. PubMed ID: 19082947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]