BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21341818)

  • 1. Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor.
    van der Weij-de Wit CD; Dekker JP; van Grondelle R; van Stokkum IH
    J Phys Chem A; 2011 Apr; 115(16):3947-56. PubMed ID: 21341818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study.
    Miloslavina Y; Szczepaniak M; Müller MG; Sander J; Nowaczyk M; Rögner M; Holzwarth AR
    Biochemistry; 2006 Feb; 45(7):2436-42. PubMed ID: 16475833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode?
    Raszewski G; Renger T
    J Am Chem Soc; 2008 Apr; 130(13):4431-46. PubMed ID: 18327941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence.
    Krausz E; Hughes JL; Smith P; Pace R; Peterson Arsköld S
    Photochem Photobiol Sci; 2005 Sep; 4(9):744-53. PubMed ID: 16121287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy.
    Pawlowicz NP; Groot ML; van Stokkum IH; Breton J; van Grondelle R
    Biophys J; 2007 Oct; 93(8):2732-42. PubMed ID: 17573421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core.
    Melkozernov AN; Bibby TS; Lin S; Barber J; Blankenship RE
    Biochemistry; 2003 Apr; 42(13):3893-903. PubMed ID: 12667080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary photophysical processes in photosystem II: bridging the gap between crystal structure and optical spectra.
    Renger T; Schlodder E
    Chemphyschem; 2010 Apr; 11(6):1141-53. PubMed ID: 20394099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation of the structure of P680 and the charge distribution on its radical cation in isolated reaction center complexes of photosystem II as revealed by fourier transform infrared spectroscopy.
    Okubo T; Tomo T; Sugiura M; Noguchi T
    Biochemistry; 2007 Apr; 46(14):4390-7. PubMed ID: 17371054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox potentials of chlorophylls and beta-carotene in the antenna complexes of photosystem II.
    Ishikita H; Knapp EW
    J Am Chem Soc; 2005 Feb; 127(6):1963-8. PubMed ID: 15701031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant.
    Vavilin D; Xu H; Lin S; Vermaas W
    Biochemistry; 2003 Feb; 42(6):1731-46. PubMed ID: 12578388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The orientations of core antenna chlorophylls in photosystem II are optimized to maximize the quantum yield of photosynthesis.
    Vasil'ev S; Shen JR; Kamiya N; Bruce D
    FEBS Lett; 2004 Mar; 561(1-3):111-6. PubMed ID: 15013760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus.
    Krivanek R; Kern J; Zouni A; Dau H; Haumann M
    Biochim Biophys Acta; 2007 Jun; 1767(6):520-7. PubMed ID: 17397795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II.
    Casazza AP; Szczepaniak M; Müller MG; Zucchelli G; Holzwarth AR
    Biochim Biophys Acta; 2010 Sep; 1797(9):1606-16. PubMed ID: 20488160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II.
    de Weerd FL; van Stokkum IH; van Amerongen H; Dekker JP; van Grondelle R
    Biophys J; 2002 Mar; 82(3):1586-97. PubMed ID: 11867471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Based Modeling of Fluorescence Kinetics of Photosystem II: Relation between Its Dimeric Form and Photoregulation.
    Mohamed A; Nagao R; Noguchi T; Fukumura H; Shibata Y
    J Phys Chem B; 2016 Jan; 120(3):365-76. PubMed ID: 26714062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane.
    Croce R; van Amerongen H
    J Photochem Photobiol B; 2011; 104(1-2):142-53. PubMed ID: 21402480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the redox potential of the stable electron acceptor, Q(B), in mutagenized photosystem II reaction centers.
    Perrine Z; Sayre R
    Biochemistry; 2011 Mar; 50(9):1454-64. PubMed ID: 21235277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge recombination in S(n)Tyr(Z)(•)Q(A)(-•) radical pairs in D1 protein variants of Photosystem II: long range electron transfer in the Marcus inverted region.
    Boussac A; Rappaport F; Brettel K; Sugiura M
    J Phys Chem B; 2013 Mar; 117(12):3308-14. PubMed ID: 23448315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-domain spectroscopic study of the PS I-CP43' supercomplex from the cyanobacterium Synechocystis PCC 6803 grown under iron stress conditions.
    Riley KJ; Zazubovich V; Jankowiak R
    J Phys Chem B; 2006 Nov; 110(45):22436-46. PubMed ID: 17091985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II.
    Reppert M; Zazubovich V; Dang NC; Seibert M; Jankowiak R
    J Phys Chem B; 2008 Aug; 112(32):9934-47. PubMed ID: 18642950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.