These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21341823)

  • 61. On the existence of a natural common gauge-origin for the calculation of magnetic properties of atoms and molecules via gaugeless basis sets.
    Pelloni S; Lazzeretti P
    J Chem Phys; 2012 Apr; 136(16):164110. PubMed ID: 22559473
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Convergence of Electronic Structure with the Size of the QM Region: Example of QM/MM NMR Shieldings.
    Flaig D; Beer M; Ochsenfeld C
    J Chem Theory Comput; 2012 Jul; 8(7):2260-71. PubMed ID: 26588959
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study.
    Sinnecker S; Neese F
    J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation.
    Moon S; Case DA
    J Comput Chem; 2006 May; 27(7):825-36. PubMed ID: 16541428
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component.
    Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Endohedral and external through-space shieldings of the fullerenes c50, c60, c60(-6), c70, and c70(-6)-visualization of (anti)aromaticity and their effects on the chemical shifts of encapsulated nuclei.
    Kleinpeter E; Klod S; Koch A
    J Org Chem; 2008 Feb; 73(4):1498-507. PubMed ID: 18197684
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NMR shielding tensors from auxiliary density functional theory.
    Zuniga-Gutierrez B; Geudtner G; Köster AM
    J Chem Phys; 2011 Mar; 134(12):124108. PubMed ID: 21456646
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Finite-field implementation of NMR chemical shieldings for molecules: direct and converse gauge-including projector-augmented-wave methods.
    Vasconcelos F; de Wijs GA; Havenith RW; Marsman M; Kresse G
    J Chem Phys; 2013 Jul; 139(1):014109. PubMed ID: 23822295
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Carbon and proton shielding tensors in methyl halides.
    Kantola AM; Lantto P; Vaara J; Jokisaari J
    Phys Chem Chem Phys; 2010 Mar; 12(11):2679-92. PubMed ID: 20200746
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A theoretical study of 31P NMR chemical shielding models for concentrated phosphoric acid solution.
    Chesnut DB
    J Phys Chem A; 2005 Dec; 109(51):11962-6. PubMed ID: 16366649
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 31P NMR chemical shifts in hypervalent oxyphosphoranes and polymeric orthophosphates.
    Zhang Y; Oldfield E
    J Phys Chem B; 2006 Jan; 110(1):579-86. PubMed ID: 16471570
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solid-state 17O NMR study of the electric-field-gradient and chemical shielding tensors in polycrystalline gamma-glycine.
    Yamada K; Honda H; Yamazaki T; Yoshida M
    Solid State Nucl Magn Reson; 2006 Oct; 30(3-4):162-70. PubMed ID: 17045787
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gauge invariance of the nuclear spin/electron orbit interaction and NMR spectral parameters.
    Lazzeretti P
    J Chem Phys; 2012 Aug; 137(7):074108. PubMed ID: 22920104
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Linear and sublinear scaling computation of the electronic g-tensor at the density functional theory level.
    Glasbrenner M; Vogler S; Ochsenfeld C
    J Chem Phys; 2019 Jan; 150(2):024104. PubMed ID: 30646705
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The ring current model of the pentaprismane molecule.
    Pelloni S; Carion R; Liégeois V; Lazzeretti P
    J Comput Chem; 2011 Jun; 32(8):1599-611. PubMed ID: 21370237
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ab initio quality properties for macromolecules using the ADMA approach.
    Exner TE; Mezey PG
    J Comput Chem; 2003 Dec; 24(16):1980-6. PubMed ID: 14531052
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Calculation of magnetically induced currents in hydrocarbon nanorings.
    Taubert S; Sundholm D; Jusélius J; Klopper W; Fliegl H
    J Phys Chem A; 2008 Dec; 112(51):13584-92. PubMed ID: 19055397
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules.
    Pennanen TO; Vaara J
    J Chem Phys; 2005 Nov; 123(17):174102. PubMed ID: 16375512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.