These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21341992)

  • 1. Elastogenic inductability of smooth muscle cells from a rat model of late stage abdominal aortic aneurysms.
    Gacchina CE; Deb P; Barth JL; Ramamurthi A
    Tissue Eng Part A; 2011 Jul; 17(13-14):1699-711. PubMed ID: 21341992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating smooth muscle cells from CaCl2-induced rat aortal expansions as a surrogate culture model for study of elastogenic induction of human aneurysmal cells.
    Gacchina C; Brothers T; Ramamurthi A
    Tissue Eng Part A; 2011 Aug; 17(15-16):1945-58. PubMed ID: 21417692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-elastogenic effects of bone marrow mesenchymal stem cell-derived smooth muscle cells on cultured aneurysmal smooth muscle cells.
    Swaminathan G; Gadepalli VS; Stoilov I; Mecham RP; Rao RR; Ramamurthi A
    J Tissue Eng Regen Med; 2017 Mar; 11(3):679-693. PubMed ID: 25376929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pro-elastogenic effects of mesenchymal stem cell derived smooth muscle cells in a 3D collagenous milieu.
    Dahal S; Swaminathan G; Carney S; Broekelmann T; Mecham R; Ramamurthi A
    Acta Biomater; 2020 Mar; 105():180-190. PubMed ID: 31982591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles for localized delivery of hyaluronan oligomers towards regenerative repair of elastic matrix.
    Sylvester A; Sivaraman B; Deb P; Ramamurthi A
    Acta Biomater; 2013 Dec; 9(12):9292-302. PubMed ID: 23917150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of hyaluronan oligomers and transforming growth factor-beta1 factors for elastic matrix regeneration by aneurysmal rat aortic smooth muscle cells.
    Kothapalli CR; Gacchina CE; Ramamurthi A
    Tissue Eng Part A; 2009 Nov; 15(11):3247-60. PubMed ID: 19374489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of pre-existing elastic matrix on TGFβ1 and HA oligomer-induced regenerative elastin repair by rat aortic smooth muscle cells.
    Gacchina CE; Ramamurthi A
    J Tissue Eng Regen Med; 2011 Feb; 5(2):85-96. PubMed ID: 20653044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotype-based selection of bone marrow mesenchymal stem cell-derived smooth muscle cells for elastic matrix regenerative repair in abdominal aortic aneurysms.
    Swaminathan G; Stoilov I; Broekelmann T; Mecham R; Ramamurthi A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e60-e70. PubMed ID: 27860330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced elastic matrix deposition within three-dimensional collagen scaffolds.
    Venkataraman L; Ramamurthi A
    Tissue Eng Part A; 2011 Nov; 17(21-22):2879-89. PubMed ID: 21702719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically-responsive, multifunctional drug delivery nanoparticles for elastic matrix regenerative repair.
    Sivaraman B; Swaminathan G; Moore L; Fox J; Seshadri D; Dahal S; Stoilov I; Zborowski M; Mecham R; Ramamurthi A
    Acta Biomater; 2017 Apr; 52():171-186. PubMed ID: 27884774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastogenic effects of exogenous hyaluronan oligosaccharides on vascular smooth muscle cells.
    Joddar B; Ramamurthi A
    Biomaterials; 2006 Nov; 27(33):5698-707. PubMed ID: 16899292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal mapping of matrix remodelling and evidence of in situ elastogenesis in experimental abdominal aortic aneurysms.
    Deb PP; Ramamurthi A
    J Tissue Eng Regen Med; 2017 Jan; 11(1):231-245. PubMed ID: 24799390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult Mesenchymal Stem Cells and Derivatives in Improved Elastin Homeostasis in a Rat Model of Abdominal Aortic Aneurysms.
    Dahal S; Dayal S; Androjna C; Peterson J; Ramamurthi A
    Stem Cells Transl Med; 2022 Aug; 11(8):850-860. PubMed ID: 35758561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells.
    Kothapalli CR; Taylor PM; Smolenski RT; Yacoub MH; Ramamurthi A
    Tissue Eng Part A; 2009 Mar; 15(3):501-11. PubMed ID: 18847364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cathepsin K-targeted sub-micron particles for regenerative repair of vascular elastic matrix.
    Jennewine B; Fox J; Ramamurthi A
    Acta Biomater; 2017 Apr; 52():60-73. PubMed ID: 28087488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced elastin regeneration by chronically activated smooth muscle cells for targeted aneurysm repair.
    Kothapalli CR; Ramamurthi A
    Acta Biomater; 2010 Jan; 6(1):170-8. PubMed ID: 19505598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Epidermal Growth Factor Receptor to Stimulate Elastic Matrix Regenerative Repair.
    Dayal S; Broekelmann T; Mecham RP; Ramamurthi A
    Tissue Eng Part A; 2023 Apr; 29(7-8):187-199. PubMed ID: 36641641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term stabilization of expanding aortic aneurysms by a short course of cyclosporine A through transforming growth factor-beta induction.
    Dai J; Michineau S; Franck G; Desgranges P; Becquemin JP; Gervais M; Allaire E
    PLoS One; 2011; 6(12):e28903. PubMed ID: 22194945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional, JNK-inhibiting nanotherapeutics for augmented elastic matrix regenerative repair in aortic aneurysms.
    Camardo A; Seshadri D; Broekelmann T; Mecham R; Ramamurthi A
    Drug Deliv Transl Res; 2018 Aug; 8(4):964-984. PubMed ID: 28875468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium Nitroprusside Stimulation of Elastic Matrix Regeneration by Aneurysmal Smooth Muscle Cells.
    Bastola S; Kothapalli C; Ramamurthi A
    Tissue Eng Part A; 2023 Apr; 29(7-8):225-243. PubMed ID: 36597287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.