These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21342539)

  • 1. Gene-gene interaction filtering with ensemble of filters.
    Yang P; Ho JW; Yang YH; Zhou BB
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S10. PubMed ID: 21342539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions.
    Greene CS; Penrod NM; Kiralis J; Moore JH
    BioData Min; 2009 Sep; 2(1):5. PubMed ID: 19772641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic ensemble approach for gene-gene interaction identification.
    Yang P; Ho JW; Zomaya AY; Zhou BB
    BMC Bioinformatics; 2010 Oct; 11():524. PubMed ID: 20961462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimalist ensemble algorithms for genome-wide protein localization prediction.
    Lin JR; Mondal AM; Liu R; Hu J
    BMC Bioinformatics; 2012 Jul; 13():157. PubMed ID: 22759391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings.
    Goldstein BA; Hubbard AE; Cutler A; Barcellos LF
    BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tag SNP selection via a genetic algorithm.
    Mahdevar G; Zahiri J; Sadeghi M; Nowzari-Dalini A; Ahrabian H
    J Biomed Inform; 2010 Oct; 43(5):800-4. PubMed ID: 20546935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing ReliefF filters to extract meaningful features from genetic lifetime datasets.
    Beretta L; Santaniello A
    J Biomed Inform; 2011 Apr; 44(2):361-9. PubMed ID: 21168527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.
    Wang YT; Sung PY; Lin PL; Yu YW; Chung RH
    BMC Genomics; 2015 May; 16(1):381. PubMed ID: 25975968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "SNP Snappy": a strategy for fast genome-wide association studies fitting a full mixed model.
    Meyer K; Tier B
    Genetics; 2012 Jan; 190(1):275-7. PubMed ID: 22021386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of gene-gene interactions in cardiac traits and serum fatty acid levels in the LURIC Health Study.
    Zhou J; Passero K; Palmiero NE; Müller-Myhsok B; Kleber ME; Maerz W; Hall MA
    PLoS One; 2020; 15(9):e0238304. PubMed ID: 32915819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using biofilter, and gene-environment interactions using the Phenx Toolkit*.
    Pendergrass SA; Verma SS; Hall MA; Holzinger ER; Moore CB; Wallace JR; Dudek SM; Huggins W; Kitchner T; Waudby C; Berg R; Mccarty CA; Ritchie MD
    Pac Symp Biocomput; 2015; ():495-505. PubMed ID: 25741542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies.
    Han B; Chen XW
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bag of Naïve Bayes: biomarker selection and classification from genome-wide SNP data.
    Sambo F; Trifoglio E; Di Camillo B; Toffolo GM; Cobelli C
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S2. PubMed ID: 23095127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
    Wu Q; Ye Y; Liu Y; Ng MK
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis.
    Ozçift A
    Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.