BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21342566)

  • 1. Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites.
    Totrov M
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S35. PubMed ID: 21342566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLIC: protein-ligand interaction clusters.
    Anand P; Nagarajan D; Mukherjee S; Chandra N
    Database (Oxford); 2014; 2014(0):bau029. PubMed ID: 24763918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of ligand molecules in PDB with graph match-based structural superposition.
    Shionyu-Mitsuyama C; Hijikata A; Tsuji T; Shirai T
    J Struct Funct Genomics; 2016 Dec; 17(4):135-146. PubMed ID: 28012138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PESDserv: a server for high-throughput comparison of protein binding site surfaces.
    Das S; Krein MP; Breneman CM
    Bioinformatics; 2010 Aug; 26(15):1913-4. PubMed ID: 20538727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.
    Reisen F; Weisel M; Kriegl JM; Schneider G
    J Proteome Res; 2010 Dec; 9(12):6498-510. PubMed ID: 20883038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding site similarity identification based on chemical and geometric similarity.
    Tu H; Shi T
    Protein J; 2013 Jun; 32(5):373-85. PubMed ID: 23700221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting protein-ligand binding site using support vector machine with protein properties.
    Wong GY; Leung FH; Ling SH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1517-29. PubMed ID: 24407309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity.
    Siragusa L; Cross S; Baroni M; Goracci L; Cruciani G
    Proteins; 2015 Mar; 83(3):517-32. PubMed ID: 25556939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pocketome via comprehensive identification and classification of ligand binding envelopes.
    An J; Totrov M; Abagyan R
    Mol Cell Proteomics; 2005 Jun; 4(6):752-61. PubMed ID: 15757999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures.
    Shin JM; Cho DH
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D238-41. PubMed ID: 15608186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank.
    Kellenberger E; Muller P; Schalon C; Bret G; Foata N; Rognan D
    J Chem Inf Model; 2006; 46(2):717-27. PubMed ID: 16563002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding similarity network of ligand.
    Park K; Kim D
    Proteins; 2008 May; 71(2):960-71. PubMed ID: 18004762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of automatic ligand building in ARP/wARP.
    Evrard GX; Langer GG; Perrakis A; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2007 Jan; 63(Pt 1):108-17. PubMed ID: 17164533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.
    Bhagavat R; Srinivasan N; Chandra N
    Proteins; 2017 Sep; 85(9):1699-1712. PubMed ID: 28547747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure.
    Bhagavat R; Sankar S; Srinivasan N; Chandra N
    Structure; 2018 Mar; 26(3):499-512.e2. PubMed ID: 29514079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting ligand binding residues and functional sites using multipositional correlations with graph theoretic clustering and kernel CCA.
    González AJ; Liao L; Wu CH
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):992-1001. PubMed ID: 22025754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase.
    Kuhn D; Weskamp N; Schmitt S; Hüllermeier E; Klebe G
    J Mol Biol; 2006 Jun; 359(4):1023-44. PubMed ID: 16697007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application.
    Baroni M; Cruciani G; Sciabola S; Perruccio F; Mason JS
    J Chem Inf Model; 2007; 47(2):279-94. PubMed ID: 17381166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.