These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21342587)

  • 1. Incorporating Ab Initio energy into threading approaches for protein structure prediction.
    Shao M; Wang S; Wang C; Yuan X; Li SC; Zheng W; Bu D
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S54. PubMed ID: 21342587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.
    Zhang Y
    Proteins; 2014 Feb; 82 Suppl 2(0 2):175-87. PubMed ID: 23760925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement.
    Kolinski A; Betancourt MR; Kihara D; Rotkiewicz P; Skolnick J
    Proteins; 2001 Aug; 44(2):133-49. PubMed ID: 11391776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProALIGN: Directly Learning Alignments for Protein Structure Prediction via Exploiting Context-Specific Alignment Motifs.
    Kong L; Ju F; Zheng WM; Zhu J; Sun S; Xu J; Bu D
    J Comput Biol; 2022 Feb; 29(2):92-105. PubMed ID: 35073170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
    Yang J; Zhang W; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):233-46. PubMed ID: 26343917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins.
    Bhattacharya S; Roche R; Moussad B; Bhattacharya D
    Proteins; 2022 Feb; 90(2):579-588. PubMed ID: 34599831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
    Zhang W; Yang J; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):76-86. PubMed ID: 26370505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioShell-Threading: versatile Monte Carlo package for protein 3D threading.
    Gniewek P; Kolinski A; Kloczkowski A; Gront D
    BMC Bioinformatics; 2014 Jan; 15():22. PubMed ID: 24444459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple-template approach to protein threading.
    Peng J; Xu J
    Proteins; 2011 Jun; 79(6):1930-9. PubMed ID: 21465564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; BaĆ¹ D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm.
    Skolnick J; Kihara D; Zhang Y
    Proteins; 2004 Aug; 56(3):502-18. PubMed ID: 15229883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to prediction of short-range conformational propensities in proteins.
    Gront D; Kolinski A
    Bioinformatics; 2005 Apr; 21(7):981-7. PubMed ID: 15509604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating quality of template-based protein models by alignment stability.
    Chen H; Kihara D
    Proteins; 2008 May; 71(3):1255-74. PubMed ID: 18041762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio protein structure prediction using chunk-TASSER.
    Zhou H; Skolnick J
    Biophys J; 2007 Sep; 93(5):1510-8. PubMed ID: 17496016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein threading using context-specific alignment potential.
    Ma J; Wang S; Zhao F; Xu J
    Bioinformatics; 2013 Jul; 29(13):i257-65. PubMed ID: 23812991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein complex structure predictions by multimeric threading and template recombination.
    Mukherjee S; Zhang Y
    Structure; 2011 Jul; 19(7):955-66. PubMed ID: 21742262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.