These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21342838)

  • 41. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
    Ahn G; Park JH; Kang T; Lee JW; Kang HW; Cho DW
    J Biomech Eng; 2010 Oct; 132(10):104506. PubMed ID: 20887024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mimicking natural dentin using bioactive nanohybrid scaffolds for dentinal tissue engineering.
    Vallés-Lluch A; Novella-Maestre E; Sancho-Tello M; Pradas MM; Ferrer GG; Batalla CC
    Tissue Eng Part A; 2010 Sep; 16(9):2783-93. PubMed ID: 20388038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.
    Smits AI; Driessen-Mol A; Bouten CV; Baaijens FP
    Tissue Eng Part C Methods; 2012 Jun; 18(6):475-85. PubMed ID: 22224590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.
    Hamid Q; Snyder J; Wang C; Timmer M; Hammer J; Guceri S; Sun W
    Biofabrication; 2011 Sep; 3(3):034109. PubMed ID: 21727312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors.
    Seifu DG; Isimjan TT; Mequanint K
    Acta Biomater; 2011 Oct; 7(10):3670-8. PubMed ID: 21704199
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increasing the pore size of electrospun scaffolds.
    Rnjak-Kovacina J; Weiss AS
    Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization.
    Chen W; Tong YW
    Acta Biomater; 2012 Feb; 8(2):540-8. PubMed ID: 22005329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor.
    Fan J; Jia X; Huang Y; Fu BM; Fan Y
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E210-8. PubMed ID: 23349107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering.
    Shavandi A; Bekhit AE; Sun Z; Ali MA
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1446-1456. PubMed ID: 27126171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering.
    Chai YC; Truscello S; Bael SV; Luyten FP; Vleugels J; Schrooten J
    Acta Biomater; 2011 May; 7(5):2310-9. PubMed ID: 21215337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.