These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 21343214)

  • 1. Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells.
    Rungsiyanont S; Dhanesuan N; Swasdison S; Kasugai S
    J Biomater Appl; 2012 Jul; 27(1):47-54. PubMed ID: 21343214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human periodontal ligament cells reaction on a novel hydroxyapatite-collagen scaffold.
    Guo J; Wang Y; Cao C; Dziak R; Preston B; Guan G
    Dent Traumatol; 2013 Apr; 29(2):103-9. PubMed ID: 22681634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration.
    Ning L; Malmström H; Ren YF
    J Oral Implantol; 2015 Feb; 41(1):45-9. PubMed ID: 23574526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue.
    Zhang YF; Cheng XR; Chen Y; Shi B; Chen XH; Xu DX; Ke J
    J Biomater Appl; 2007 Apr; 21(4):333-49. PubMed ID: 16543282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development.
    Zhao F; Grayson WL; Ma T; Bunnell B; Lu WW
    Biomaterials; 2006 Mar; 27(9):1859-67. PubMed ID: 16225916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite.
    Jaiswal AK; Chhabra H; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds.
    Fang B; Wan YZ; Tang TT; Gao C; Dai KR
    Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold.
    He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC
    J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and evaluation of osteoblastic differentiation of human mesenchymal stem cells on novel CaO-SiO2-P2O5-B2O3 glass-ceramics.
    Lee JH; Seo JH; Lee KM; Ryu HS; Baek HR
    Artif Organs; 2013 Jul; 37(7):637-47. PubMed ID: 23560457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.